- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在迈出开发利用 TensorFlow(尤其是 TensorFlow.js 库)的应用程序的第一步。
我已经遍历了 examples如果我只有两个数据轴(进展,perceivedSkinAppearance),让它工作。
// Visualize Data ========================================================== //
function CreateModel() {
// Create a sequential model
const model = tf.sequential();
// Add a single hidden layer
model.add(tf.layers.dense({ inputShape: [1], units: 1, useBias: true }));
// Add an output layer
model.add(tf.layers.dense({ units: 1, useBias: true }));
return model;
}
function ConvertToTensor(data) {
return tf.tidy(() => {
// Shuffle the data
tf.util.shuffle(data);
// Convert data to Tensor
const inputs = data.map(d => parseInt(d.progression));
const labels = data.map(d => parseInt(d.perceivedSkinAppearance));
const inputTensor = tf.tensor2d(inputs, [inputs.length, 1]);
const labelTensor = tf.tensor2d(labels, [labels.length, 1]);
console.log(inputTensor);
console.log(labelTensor);
// Normalize the data to the range 0 - 1 using min-max scaling
const inputMax = inputTensor.max();
const inputMin = inputTensor.min();
const labelMax = labelTensor.max();
const labelMin = labelTensor.min();
const normalizedInputs = inputTensor.sub(inputMin).div(inputMax.sub(inputMin));
const normalizedLabels = labelTensor.sub(labelMin).div(labelMax.sub(labelMin));
return {
inputs: normalizedInputs,
labels: normalizedLabels,
inputMax,
inputMin,
labelMax,
labelMin,
}
});
}
async function TrainModel(model, inputs, labels) {
model.compile({
optimizer: tf.train.adam(),
loss: tf.losses.meanSquaredError,
metrics: ['mse'],
});
const batchSize = 32;
const epochs = 50;
return await model.fit(inputs, labels, {
batchSize,
epochs,
shuffle: true,
callbacks: tfvis.show.fitCallbacks(
{ name: 'Training Performance' },
['loss', 'mse'],
{ height: 200, callbacks: ['onEpochEnd'] }
)
});
}
function TestModel(model, inputData, normalizationData) {
const { inputMax, inputMin, labelMin, labelMax } = normalizationData;
// Generate predictions for a uniform range of numbers between 0 and 1;
// We un-normalize the data by doing the inverse of the min-max scaling
// that we did earlier.
const [xs, preds] = tf.tidy(() => {
const xs = tf.linspace(0, 1, 100);
const preds = model.predict(xs.reshape([100, 1]));
const unNormXs = xs
.mul(inputMax.sub(inputMin))
.add(inputMin);
const unNormPreds = preds
.mul(labelMax.sub(labelMin))
.add(labelMin);
// Un-normalize the data
return [unNormXs.dataSync(), unNormPreds.dataSync()];
});
const predictedPoints = Array.from(xs).map((val, i) => {
return { x: val, y: preds[i] }
});
const originalPoints = inputData.map(d => ({
x: parseInt(d.progression),
y: parseInt(d.perceivedSkinAppearance)
}));
tfvis.render.scatterplot(
{ name: 'Model Predictions vs Original Data' },
{ values: [originalPoints, predictedPoints], series: ['original', 'predicted'] },
{
xLabel: 'Progression',
yLabel: 'Perceived Skin Appearance',
height: 300
}
);
}
async function VisualizeData() {
// Load and plot the original input data that we are going to train on.
const data = await appData.read("conditions", "created");
const values = data.map(d => ({
x: (d.progression / 86400000),
y: d.perceivedSkinAppearance
}));
tfvis.render.scatterplot(
{ name: 'Skin Appearance vs Progression' },
{ values },
{
xLabel: 'Progression',
yLabel: 'Appearance',
height: 300
}
);
const model = CreateModel();
tfvis.show.modelSummary({ name: 'Model Summary' }, model);
const tensorData = ConvertToTensor(data);
const { inputs, labels } = tensorData;
await TrainModel(model, inputs, labels);
console.log('Done Training');
TestModel(model, data, tensorData);
}
如果我有一个更复杂的数据集,我无法解决这个问题——演示没有涵盖——如何解决这个问题,例如:
{
"a25bfa27-4447-3a54-d2c5-29685b0dbed3" : {
"affectedAreas" : [ "361106d9-5bc1-42ab-a52d-8b23eb2ed923", "79916df1-99d8-4ec6-8bc0-531c9c9725c8", "23a220e8-cfff-4dd0-87c3-066f11d99506", "3df1c2a4-a7d5-4a8f-8753-eef9d3c44e76" ],
"created" : "2019-07-29 18:58:37",
"gender" : "Z2VuZGVyfHx8ZmVtYWxl",
"humidityObserved" : 18,
"locationLatitude" : "bG9jYXRpb25MYXRpdHVkZXx8fDMzLjI2MTgzMDM=",
"locationLongitude" : "bG9jYXRpb25Mb25naXR1ZGV8fHwtMTExLjgwNTI0OTk=",
"notes" : "",
"observed" : "2019-07-29 18:58:00",
"observer" : "b2JzZXJ2ZXJ8fHw0WDlqT1Nlem10U0ltVkdRRWk4MEZKZHRoMEsz",
"perceivedSkinAppearance" : "3",
"perceivedSkinSensation" : "3",
"perceivedSkinTexture" : "3",
"pollenCountObserved" : 0,
"progression" : 186544718618,
"subject" : "c3ViamVjdHx8fDg0NGRmNmQyLTBjOTUtNDE3ZS1hYWUxLTc5ZjUxNjM1OWMyMw==",
"temperatureMaximum" : 109.4,
"temperatureMinimum" : 102.99,
"temperatureObserved" : 106.21,
"triggersEncountered" : [ "1cfb8826-58ad-4168-905c-6f6150d3618e", "928915de-aadc-45e4-b386-4df7fcbf9787" ],
"uvIndexObserved" : 11.31
},
"d6604849-a6ed-0fef-4541-ba6b65e8ffa2" : {
"affectedAreas" : [ "361106d9-5bc1-42ab-a52d-8b23eb2ed923", "b0b72048-393f-4980-b649-c764aed50c1d", "3df1c2a4-a7d5-4a8f-8753-eef9d3c44e76" ],
"created" : "2019-07-17 15:43:46",
"gender" : "Z2VuZGVyfHx8ZmVtYWxl",
"humidityObserved" : 26,
"locationLatitude" : "bG9jYXRpb25MYXRpdHVkZXx8fDMzLjI2MDYyMTg2Mjg5NDQ3",
"locationLongitude" : "bG9jYXRpb25Mb25naXR1ZGV8fHwtMTExLjgwNTE4MDEyMTY3NzIx",
"notes" : "",
"observed" : "2019-07-17 15:43:00",
"observer" : "b2JzZXJ2ZXJ8fHxGZkducU1tUVlGVE9QQUZ3Wjc3THpwMEFCNHMx",
"perceivedSkinAppearance" : "3",
"perceivedSkinSensation" : "3",
"perceivedSkinTexture" : "3",
"pollenCountObserved" : 0,
"progression" : 185496227507,
"subject" : "c3ViamVjdHx8fDg0NGRmNmQyLTBjOTUtNDE3ZS1hYWUxLTc5ZjUxNjM1OWMyMw==",
"temperatureMaximum" : 106,
"temperatureMinimum" : 100,
"temperatureObserved" : 103.15,
"triggersEncountered" : [ "f756a7af-6a3d-4e48-998d-d706eac68e09" ],
"uvIndexObserved" : 11.57
},
"fe5e995d-8b89-c6a7-23b5-3fb27112a92b" : {
"created" : "2019-06-30 16:13:26",
"gender" : "Z2VuZGVyfHx8ZmVtYWxl",
"humidityObserved" : 12,
"locationLatitude" : "bG9jYXRpb25MYXRpdHVkZXx8fDMzLjI2MDY0Njc1MDIzMjAz",
"locationLongitude" : "bG9jYXRpb25Mb25naXR1ZGV8fHwtMTExLjgwNTEyNTkxNDk3NTA0",
"notes" : "",
"observed" : "2019-06-30 16:13:00",
"observer" : "b2JzZXJ2ZXJ8fHxGZkducU1tUVlGVE9QQUZ3Wjc3THpwMEFCNHMx",
"perceivedSkinAppearance" : "1",
"perceivedSkinSensation" : "3",
"perceivedSkinTexture" : "3",
"pollenCountObserved" : 0,
"progression" : 184029207516,
"subject" : "c3ViamVjdHx8fDg0NGRmNmQyLTBjOTUtNDE3ZS1hYWUxLTc5ZjUxNjM1OWMyMw==",
"temperatureMaximum" : 105.01,
"temperatureMinimum" : 95,
"temperatureObserved" : 99.95,
"triggersEncountered" : [ "f756a7af-6a3d-4e48-998d-d706eac68e09" ],
"uvIndexObserved" : 11.28
}
}
Note: the obvious hashed values would be unhashed before actually using them, so don't panic about them being weird data types.
更新我更新了我的代码以反射(reflect)建议的映射更改,现在在 CreateModel、TestModel、TrainModel 方法上出现错误,因为这些模型显然现在不期望我的新数据 inputShape?
这是我更新后的代码:
var mappingIndex = 0;
var mappingDictionary = [];
function MapToDictionary(stringToFind, uniquePrepend) {
var output = 0;
if (stringToFind)
{
if (uniquePrepend)
{
stringToFind = uniquePrepend + stringToFind;
}
var queryResult = mappingDictionary.filter(obj => Object.values(obj).some(val => val?val.toString().toLowerCase().includes(stringToFind):false))[0];
if (queryResult) {
output = queryResult["Key"];
}
else {
mappingIndex = mappingIndex + 1;
var mappingDictionaryEntry = {};
mappingDictionaryEntry.Key = mappingIndex;
mappingDictionaryEntry.Value = stringToFind;
mappingDictionary.push(mappingDictionaryEntry);
output = mappingIndex;
}
console.log(stringToFind + ": " + output);
return output;
}
}
// Visualize Data ========================================================== //
function CreateModel() {
// Create a sequential model
const model = tf.sequential();
// Add a single hidden layer
model.add(tf.layers.dense({ inputShape: [3,16], units: 1, useBias: true }));
// Add an output layer
model.add(tf.layers.dense({ units: 1, useBias: true }));
return model;
}
function ConvertToTensor(data) {
return tf.tidy(() => {
// Shuffle the data
tf.util.shuffle(data);
console.log(data);
// Convert data to Tensor
const inputs = data.map(d => [
MapToDictionary(d.affectedAreas, "affectedAreas"),
MapToDictionary(d.gender, "gender"),
parseInt(d.humidityObserved),
parseInt(d.locationLatitude),
parseInt(d.locationLongitude),
parseInt(d.observed),
parseInt(d.perceivedSkinAppearance),
parseInt(d.perceivedSkinSensation),
parseInt(d.perceivedSkinTexture),
parseInt(d.progression),
MapToDictionary(d.subject, "subject"),
parseInt(d.temperatureMaximum),
parseInt(d.temperatureMinimum),
parseInt(d.temperatureObserved),
MapToDictionary(d.triggersEncountered, "triggersEncountered"),
parseInt(d.uvIndexObserved)
]);
const labels = data.map(d => parseInt(d.progression));
const inputTensor = tf.tensor2d(inputs);
const labelTensor = tf.tensor2d(labels, [labels.length, 1]);
// Normalize the data to the range 0 - 1 using min-max scaling
const inputMax = inputTensor.max();
const inputMin = inputTensor.min();
const labelMax = labelTensor.max();
const labelMin = labelTensor.min();
const normalizedInputs = inputTensor.sub(inputMin).div(inputMax.sub(inputMin));
const normalizedLabels = labelTensor.sub(labelMin).div(labelMax.sub(labelMin));
return {
inputs: normalizedInputs,
labels: normalizedLabels,
inputMax,
inputMin,
labelMax,
labelMin,
}
});
}
async function TrainModel(model, inputs, labels) {
model.compile({
optimizer: tf.train.adam(),
loss: tf.losses.meanSquaredError,
metrics: ['mse'],
});
const batchSize = 32;
const epochs = 50;
return await model.fit(inputs, labels, {
batchSize,
epochs,
shuffle: true,
callbacks: tfvis.show.fitCallbacks(
{ name: 'Training Performance' },
['loss', 'mse'],
{ height: 200, callbacks: ['onEpochEnd'] }
)
});
}
function TestModel(model, inputData, normalizationData) {
const { inputMax, inputMin, labelMin, labelMax } = normalizationData;
// Generate predictions for a uniform range of numbers between 0 and 1;
// We un-normalize the data by doing the inverse of the min-max scaling
// that we did earlier.
const [xs, preds] = tf.tidy(() => {
const xs = tf.linspace(0, 1, 100);
const preds = model.predict(xs.reshape([100, 1]));
const unNormXs = xs
.mul(inputMax.sub(inputMin))
.add(inputMin);
const unNormPreds = preds
.mul(labelMax.sub(labelMin))
.add(labelMin);
// Un-normalize the data
return [unNormXs.dataSync(), unNormPreds.dataSync()];
});
const predictedPoints = Array.from(xs).map((val, i) => {
return { x: val, y: preds[i] }
});
const originalPoints = inputData.map(d => ({
x: parseInt(d.progression),
y: parseInt(d.perceivedSkinAppearance)
}));
tfvis.render.scatterplot(
{ name: 'Original vs. Predictions' },
{ values: [originalPoints, predictedPoints], series: ['original', 'predicted'] },
{
xLabel: 'Original',
yLabel: 'Predicted',
height: 300
}
);
}
async function VisualizeData() {
// Load and plot the original input data that we are going to train on.
const data = await appData.read("conditions", "created");
const values = data.map(d => ({
x: (d.progression / 86400000),
y: d.perceivedSkinAppearance
}));
tfvis.render.scatterplot(
{ name: 'Skin Condition vs. Progression' },
{ values },
{
xLabel: 'Condition',
yLabel: 'Progression',
height: 300
}
);
const model = CreateModel();
tfvis.show.modelSummary({ name: 'Model Summary' }, model);
const tensorData = ConvertToTensor(data);
const { inputs, labels } = tensorData;
await TrainModel(model, inputs, labels);
console.log('Done Training');
TestModel(model, data, tensorData);
}
我得到的错误是:
Uncaught (in promise) Error: Error when checking input: expected dense_Dense1_input to have 3 dimension(s). but got array with shape 3,16
最佳答案
Tensorflow.js 使用向量。即使在您的简单示例中,您也是从对象数组创建向量(张量)。
代码示例
在您的示例中,您将使用以下代码(简化)创建一个 2 阶张量(二维):
const inputs = [1,2,3]; // example input
const inputTensor = tf.tensor2d(inputs, [inputs.length, 1]); // Tensor: [[1], [2], [3]]
另一种写法,使正在发生的事情更明显的是下面的代码。在这种情况下,我们已经将第二个维度添加到我们的 JavaScript 数组中,使其可选择将其作为第二个参数传递(正如上面所必需的)。
const inputs = [[1], [2], [3]];
const inputTensor = tf.tensor2d(inputs); // Tensor: [[1], [2], [3]]
添加更多值
要向输入向量添加更多值,可以将它们添加到 inputs
变量中:
const inputs = [[1, 4], [2, 5], [3, 6]];
const inputTensor = tf.tensor2d(inputs); // Tensor: [[1, 4], [2, 5], [3, 6]]
在您的代码中,您将在以下行中执行此操作:
const inputs = data.map(d => [
parseInt(d.progression),
parseInt(d.anotherValue),
parseInt(d.thirdAttribute)
]);
这不会返回单个值,而是会为每一行返回一个包含三个值的数组。要使您的代码适应三个值,您现在必须相应地更改 inputShape
。关于数据类型,您仍然需要使用数字。这意味着您输入的所有值都需要转换为数字。
关于javascript - TensorFlow.js 和复杂的数据集?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57376996/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!