- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我希望能够使用 java 构建模型,我可以使用 CLI 来实现,如下所示:
./mahout trainlogistic --input Candy-Crush.twtr.csv \
--output ./model \
--target hd_click --categories 2 \
--predictors click_frequency country_code ctr device_price_range hd_conversion time_of_day num_clicks phone_type twitter is_weekend app_entertainment app_wallpaper app_widgets arcade books_and_reference brain business cards casual comics communication education entertainment finance game_wallpaper game_widgets health_and_fitness health_fitness libraries_and_demo libraries_demo lifestyle media_and_video media_video medical music_and_audio news_and_magazines news_magazines personalization photography productivity racing shopping social sports sports_apps sports_games tools transportation travel_and_local weather app_entertainment_percentage app_wallpaper_percentage app_widgets_percentage arcade_percentage books_and_reference_percentage brain_percentage business_percentage cards_percentage casual_percentage comics_percentage communication_percentage education_percentage entertainment_percentage finance_percentage game_wallpaper_percentage game_widgets_percentage health_and_fitness_percentage health_fitness_percentage libraries_and_demo_percentage libraries_demo_percentage lifestyle_percentage media_and_video_percentage media_video_percentage medical_percentage music_and_audio_percentage news_and_magazines_percentage news_magazines_percentage personalization_percentage photography_percentage productivity_percentage racing_percentage shopping_percentage social_percentage sports_apps_percentage sports_games_percentage sports_percentage tools_percentage transportation_percentage travel_and_local_percentage weather_percentage reads_magazine_sum reads_magazine_count interested_in_gardening_sum interested_in_gardening_count kids_birthday_coming_sum kids_birthday_coming_count job_seeker_sum job_seeker_count friends_sum friends_count married_sum married_count charity_donor_sum charity_donor_count student_sum student_count interested_in_real_estate_sum interested_in_real_estate_count sports_fan_sum sports_fan_count bascketball_sum bascketball_count interested_in_politics_sum interested_in_politics_count gamer_sum gamer_count activist_sum activist_count traveler_sum traveler_count likes_soccer_sum likes_soccer_count interested_in_celebs_sum interested_in_celebs_count auto_racing_sum auto_racing_count age_group_sum age_group_count healthy_lifestyle_sum healthy_lifestyle_count interested_in_finance_sum interested_in_finance_count sports_teams_usa_sum sports_teams_usa_count interested_in_deals_sum interested_in_deals_count business_oriented_sum business_oriented_count interested_in_cooking_sum interested_in_cooking_count music_lover_sum music_lover_count beauty_sum beauty_count follows_fashion_sum follows_fashion_count likes_wrestling_sum likes_wrestling_count name_sum name_count shopper_sum shopper_count golf_sum golf_count vegetarian_sum vegetarian_count dating_sum dating_count interested_in_fashion_sum interested_in_fashion_count interested_in_news_sum interested_in_news_count likes_tennis_sum likes_tennis_count male_sum male_count interested_in_cars_sum interested_in_cars_count follows_bloggers_sum follows_bloggers_count entertainment_sum entertainment_count interested_in_books_sum interested_in_books_count has_kids_sum has_kids_count interested_in_movies_sum interested_in_movies_count musicians_sum musicians_count tech_oriented_sum tech_oriented_count female_sum female_count has_pet_sum has_pet_count practicing_sports_sum practicing_sports_count \
--types numeric word numeric word word word numeric word word word numeric \
--features 100 --passes 1 --rate 50
我无法理解 20 新闻组的例子,因为它太大了,值得学习。谁能给我一个与 cli 命令相同的代码?
澄清:
我需要这样的东西:
model.train(1,0,"monday",6,44,1,7,4,6,78,7,3,4,6,........,"good");
model.train(1,0,"sunday",6,44,5,7,9,2,4,6,78,7,3,4,6,........,"bad");
model.train(1,0,"monday",4,99,2,4,6,3,4,6,........,"good");
model.writeTofile("myModel.model");
如果您不熟悉分类,请不要回答,只想告诉我如何从 JAVA 执行 CLI 命令
最佳答案
我不是 100% 熟悉 Mahout API(我同意文档非常稀少)所以我只能提供指示,但我希望它有所帮助:
trainlogistic
示例的 Java 源代码实际上可以在 mahout-examples
库中找到 - 它位于 maven [0](在 org.apache 中.mahout.classifier.sgd.TrainLogistic
).我想如果你愿意,你可以只使用完全相同的源代码,但它依赖于 mahout-examples
库中的几个实用程序类(而且它也不是很干净)。
在此示例中执行训练的类是 org.apache.mahout.classifier.sgd.OnlineLogisticRegression
[1],尽管考虑到您拥有的大量预测变量,您可能希望使用AdaptiveLogisticRegression
[2](同包),内部使用了多个OnlineLogisticRegression
。但您必须亲自了解哪种方法最适合您的数据。
API 相当简单,有一个 train
方法,它接受输入数据的 Vector
和一个 classify
方法来测试你的模型,以及 learningRate
和其他更改模型参数的方法。
要像命令行工具一样将模型保存到磁盘,请使用 org.apache.mahout.classifier.sgd.ModelSerializer
,它有一个简单的 API 来编写和读取您的模型。 (OLR 类本身也有 write
和 readFields
方法,但坦率地说,我不确定它们的作用或者是否与 ModelSerializer
- 它们也没有记录。)
最后,除了 mahout-examples
中的源代码外,还有另外两个直接使用 Mahout API 的示例,可能会有用 [3, 4]。
来源:
[0] http://repo1.maven.org/maven2/org/apache/mahout/mahout-examples/0.8/
[4] http://skife.org/mahout/2013/02/14/first_steps_with_mahout.html
关于java - 在 java 代码中使用 mahout,而不是 cli,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18487044/
谁能告诉我 mahout 的 RecommenderIRStatsEvaluator 是如何工作的?更具体地说,它如何随机拆分训练和测试数据以及结果与哪些数据进行比较?基于我的低估,您需要某种理想/预
我正在学习 Mahout 并阅读“Mahout in Action”。 当我尝试运行第 7 章 SimpleKMeansClustering.java 中的示例代码时,弹出了一个异常: 线程“main
我已经在 Mahout 教程中的合成控制数据上运行了 k-Means 聚类算法,并且想知道是否有人可以解释如何解释输出。我运行了 clusterdump 并收到了如下所示的输出(为了节省空间而被截断)
我有一个基于用户相似性的 bool 偏好推荐器。我的数据集本质上包含关系,其中 ItemId 是用户决定阅读的文章。我想添加第二个数据模型,其中包含 ItemId 是对特定主题的订阅。 我能想到的唯一
对于机器学习新手来说,高效使用 Apache Mahout 的学习先决条件是什么? 我知道 Mahout 的提交者需要微积分、线性代数、概率和机器学习才能贡献任何有用的东西。但是 Apache Mah
我正在为我的数据训练 mahout 分类器, 按照我发出的创建 mahout 模型的命令 ./bin/mahout seqdirectory -i /tmp/mahout-work-root/MyDa
我正在读取大约 700 万行数据,当我重新启动应用程序时,加载所有内容需要将近两分钟的时间。我试图找出加快速度的最佳方法,以便最多只需几秒钟即可重新启动应用程序。这是我希望加快速度的代码以及当前所需的
我正在尝试使用 Apache Mahout 创建一个基于项目的推荐器,该推荐器根据其他用户也有共同点的相似项目推荐后备项目。 我首先创建一个数据模型,然后尝试将它传递给各种不同的 ItemSimila
我使用 Mahout 和 Pearson 相关算法来根据用户对多个项目的偏好来比较和查找相似用户。我遇到的问题是 Mahout 和/或 Pearson 忽略了为每个项目选择相同偏好的用户。有谁知道是否
我正在通过 apache mahout 运行朴素贝叶斯分类器算法。我们可以选择在训练和运行算法实例时设置克大小。 将 n-Gram 大小从 1 更改为 2,会极大地改变最终的分类。为什么会出现这种情况
任何人都可以建议 Mahout 到底想要应用 LDA 的输入类型吗?如果有人请详细写下以获取输出,那就太好了 最佳答案 关于 mahout 中最新形式的 LDA 的文档有点稀疏。现在它被称为“cvb”
我有一个包含 5000 万个用户偏好的数据集,其中包含 800 万个不同的用户和 18 万个不同的产品。我目前正在使用 bool 数据模型,并有一个基于谷本相似性的基本推荐器。我正在尝试探索不同的算法
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 9 年前。 Improve
我正在尝试 Apache Mahout,有很多关于如何使用 LDA 生成主题模型的信息,但是关于如何使用新的 CVB lda 算法执行相同操作的信息很少。我想要做的是生成单词到主题的概率,类似于原始的
我的环境: 驯象师:0.7 Hadoop:1.0.3 我做了什么: 安装了 mahout,并测试了朴素的贝叶斯示例 - 20newsgroup,它运行良好。 我想要达到的目标: 有 trainnb 和
当前的 Mahout 0.8-SNAPSHOT 包括用于主题建模的折叠变分贝叶斯 (cvb) 版本并删除了潜在狄利克雷分析 (lda) 方法,因为 cvb 可以更好地并行化。不幸的是,只有 lda 的
我所说的动态数据评级是指基于时间的推荐系统。 电影推荐的一个示例用例,推荐引擎读取用户历史电影观看数据并发现用户喜欢在周末观看 Action 片,引擎应该对 Action 片评分较高。 然而,由于历史
我有一个包含数据向量的文件,其中每一行都包含一个以逗号分隔的值列表。我想知道如何使用 mahout 对这些数据执行 k 均值聚类。维基中提供的示例提到了创建序列文件,但我不确定是否需要进行某种类型的转
我是 Mahout 的新手,正在尝试使用 0.5 版本的“Mahout in Action”。早期的示例之一要求使用斜率一推荐器。这个推荐器是否仍然包含在 Mahout 0.9 中?我已经浏览了文档,
我是 hadoop 的新手,更不用说 mahout 了。我希望有人可以帮助我通过这里..已经尝试了 2 天.. 我已经有一个 hadoop 集群在运行。 我正在使用 hadoop-2.0.0-alph
我是一名优秀的程序员,十分优秀!