gpt4 book ai didi

macos - elasticsearch:自动节点发现没有发生,遗漏了什么?

转载 作者:行者123 更新时间:2023-11-29 02:44:26 26 4
gpt4 key购买 nike

在我的同一台机器上,我首先运行

$ elasticsearch -f                                     
[2014-02-06 10:27:59,066][INFO ][node ] [Gabe Jones] version[0.90.11], pid[1767], build[11da1ba/2014-02-03T15:27:39Z]
[2014-02-06 10:27:59,066][INFO ][node ] [Gabe Jones] initializing ...
[2014-02-06 10:27:59,085][INFO ][plugins ] [Gabe Jones] loaded [river-twitter], sites [head]
[2014-02-06 10:28:02,239][INFO ][node ] [Gabe Jones] initialized
[2014-02-06 10:28:02,240][INFO ][node ] [Gabe Jones] starting ...
[2014-02-06 10:28:02,387][INFO ][transport ] [Gabe Jones] bound_address {inet[/127.0.0.1:9300]}, publish_address {inet[/127.0.0.1:9300]}
[2014-02-06 10:28:05,427][INFO ][cluster.service ] [Gabe Jones] new_master [Gabe Jones][jJMZNLZNTeuV5d0EjM8mew][inet[/127.0.0.1:9300]], reason: zen-disco-join (elected_as_master)
[2014-02-06 10:28:05,457][INFO ][discovery ] [Gabe Jones] elasticsearch_harith/jJMZNLZNTeuV5d0EjM8mew
[2014-02-06 10:28:05,477][INFO ][http ] [Gabe Jones] bound_address {inet[/127.0.0.1:9200]}, publish_address {inet[/127.0.0.1:9200]}
[2014-02-06 10:28:05,478][INFO ][node ] [Gabe Jones] started
[2014-02-06 10:28:05,504][INFO ][gateway ] [Gabe Jones] recovered [0] indices into cluster_state

然后为了测试节点的自动发现是否发生,我在同一台机器,不同的终端上运行同样的东西,看看

$ elasticsearch -f
[2014-02-06 10:31:57,349][INFO ][node ] [Marlene Alraune] version[0.90.11], pid[1821], build[11da1ba/2014-02-03T15:27:39Z]
[2014-02-06 10:31:57,350][INFO ][node ] [Marlene Alraune] initializing ...
[2014-02-06 10:31:57,368][INFO ][plugins ] [Marlene Alraune] loaded [river-twitter], sites [head]
[2014-02-06 10:32:00,359][INFO ][node ] [Marlene Alraune] initialized
[2014-02-06 10:32:00,360][INFO ][node ] [Marlene Alraune] starting ...
[2014-02-06 10:32:00,533][INFO ][transport ] [Marlene Alraune] bound_address {inet[/127.0.0.1:9301]}, publish_address {inet[/127.0.0.1:9301]}
[2014-02-06 10:32:03,578][INFO ][cluster.service ] [Marlene Alraune] new_master [Marlene Alraune][wXvTaK_6TGKqGa56Z2XUxw][inet[/127.0.0.1:9301]], reason: zen-disco-join (elected_as_master)
[2014-02-06 10:32:03,613][INFO ][discovery ] [Marlene Alraune] elasticsearch_harith/wXvTaK_6TGKqGa56Z2XUxw
[2014-02-06 10:32:03,639][INFO ][http ] [Marlene Alraune] bound_address {inet[/127.0.0.1:9201]}, publish_address {inet[/127.0.0.1:9201]}
[2014-02-06 10:32:03,640][INFO ][node ] [Marlene Alraune] started
[2014-02-06 10:32:03,665][INFO ][gateway ] [Marlene Alraune] recovered [0] indices into cluster_state
  • 我以为第二个节点会自动发现第一个节点,但好像不是
  • 没有更改任何配置,我需要更改吗?
  • 这是我第一次使用 elasticsearch,所以请多多包涵

更新
配置

##################### ElasticSearch Configuration Example #####################

# This file contains an overview of various configuration settings,
# targeted at operations staff. Application developers should
# consult the guide at <http://elasticsearch.org/guide>.
#
# The installation procedure is covered at
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/setup.html>.
#
# ElasticSearch comes with reasonable defaults for most settings,
# so you can try it out without bothering with configuration.
#
# Most of the time, these defaults are just fine for running a production
# cluster. If you're fine-tuning your cluster, or wondering about the
# effect of certain configuration option, please _do ask_ on the
# mailing list or IRC channel [http://elasticsearch.org/community].

# Any element in the configuration can be replaced with environment variables
# by placing them in ${...} notation. For example:
#
# node.rack: ${RACK_ENV_VAR}

# For information on supported formats and syntax for the config file, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/setup-configuration.html>


################################### Cluster ###################################

# Cluster name identifies your cluster for auto-discovery. If you're running
# multiple clusters on the same network, make sure you're using unique names.
#
cluster.name: elasticsearch_harith


#################################### Node #####################################

# Node names are generated dynamically on startup, so you're relieved
# from configuring them manually. You can tie this node to a specific name:
#
# node.name: "Franz Kafka"

# Every node can be configured to allow or deny being eligible as the master,
# and to allow or deny to store the data.
#
# Allow this node to be eligible as a master node (enabled by default):
#
# node.master: true
#
# Allow this node to store data (enabled by default):
#
# node.data: true

# You can exploit these settings to design advanced cluster topologies.
#
# 1. You want this node to never become a master node, only to hold data.
# This will be the "workhorse" of your cluster.
#
# node.master: false
# node.data: true
#
# 2. You want this node to only serve as a master: to not store any data and
# to have free resources. This will be the "coordinator" of your cluster.
#
# node.master: true
# node.data: false
#
# 3. You want this node to be neither master nor data node, but
# to act as a "search load balancer" (fetching data from nodes,
# aggregating results, etc.)
#
# node.master: false
# node.data: false

# Use the Cluster Health API [http://localhost:9200/_cluster/health], the
# Node Info API [http://localhost:9200/_cluster/nodes] or GUI tools
# such as <http://github.com/lukas-vlcek/bigdesk> and
# <http://mobz.github.com/elasticsearch-head> to inspect the cluster state.

# A node can have generic attributes associated with it, which can later be used
# for customized shard allocation filtering, or allocation awareness. An attribute
# is a simple key value pair, similar to node.key: value, here is an example:
#
# node.rack: rack314

# By default, multiple nodes are allowed to start from the same installation location
# to disable it, set the following:
# node.max_local_storage_nodes: 1


#################################### Index ####################################

# You can set a number of options (such as shard/replica options, mapping
# or analyzer definitions, translog settings, ...) for indices globally,
# in this file.
#
# Note, that it makes more sense to configure index settings specifically for
# a certain index, either when creating it or by using the index templates API.
#
# See <http://elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules.html> and
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/indices-create-index.html>
# for more information.

# Set the number of shards (splits) of an index (5 by default):
#
# index.number_of_shards: 5

# Set the number of replicas (additional copies) of an index (1 by default):
#
# index.number_of_replicas: 1

# Note, that for development on a local machine, with small indices, it usually
# makes sense to "disable" the distributed features:
#
# index.number_of_shards: 1
# index.number_of_replicas: 0

# These settings directly affect the performance of index and search operations
# in your cluster. Assuming you have enough machines to hold shards and
# replicas, the rule of thumb is:
#
# 1. Having more *shards* enhances the _indexing_ performance and allows to
# _distribute_ a big index across machines.
# 2. Having more *replicas* enhances the _search_ performance and improves the
# cluster _availability_.
#
# The "number_of_shards" is a one-time setting for an index.
#
# The "number_of_replicas" can be increased or decreased anytime,
# by using the Index Update Settings API.
#
# ElasticSearch takes care about load balancing, relocating, gathering the
# results from nodes, etc. Experiment with different settings to fine-tune
# your setup.

# Use the Index Status API (<http://localhost:9200/A/_status>) to inspect
# the index status.


#################################### Paths ####################################

# Path to directory containing configuration (this file and logging.yml):
#
# path.conf: /path/to/conf

# Path to directory where to store index data allocated for this node.
#
path.data: /usr/local/var/elasticsearch/
#
# Can optionally include more than one location, causing data to be striped across
# the locations (a la RAID 0) on a file level, favouring locations with most free
# space on creation. For example:
#
# path.data: /path/to/data1,/path/to/data2

# Path to temporary files:
#
# path.work: /path/to/work

# Path to log files:
#
path.logs: /usr/local/var/log/elasticsearch/

# Path to where plugins are installed:
#
path.plugins: /usr/local/var/lib/elasticsearch/plugins


#################################### Plugin ###################################

# If a plugin listed here is not installed for current node, the node will not start.
#
# plugin.mandatory: mapper-attachments,lang-groovy


################################### Memory ####################################

# ElasticSearch performs poorly when JVM starts swapping: you should ensure that
# it _never_ swaps.
#
# Set this property to true to lock the memory:
#
# bootstrap.mlockall: true

# Make sure that the ES_MIN_MEM and ES_MAX_MEM environment variables are set
# to the same value, and that the machine has enough memory to allocate
# for ElasticSearch, leaving enough memory for the operating system itself.
#
# You should also make sure that the ElasticSearch process is allowed to lock
# the memory, eg. by using `ulimit -l unlimited`.


############################## Network And HTTP ###############################

# ElasticSearch, by default, binds itself to the 0.0.0.0 address, and listens
# on port [9200-9300] for HTTP traffic and on port [9300-9400] for node-to-node
# communication. (the range means that if the port is busy, it will automatically
# try the next port).

# Set the bind address specifically (IPv4 or IPv6):
#
# network.bind_host: 192.168.0.1

# Set the address other nodes will use to communicate with this node. If not
# set, it is automatically derived. It must point to an actual IP address.
#
# network.publish_host: 192.168.0.1

# Set both 'bind_host' and 'publish_host':
#
network.host: 127.0.0.1

# Set a custom port for the node to node communication (9300 by default):
#
# transport.tcp.port: 9300

# Enable compression for all communication between nodes (disabled by default):
#
# transport.tcp.compress: true

# Set a custom port to listen for HTTP traffic:
#
# http.port: 9200

# Set a custom allowed content length:
#
# http.max_content_length: 100mb

# Disable HTTP completely:
#
# http.enabled: false


################################### Gateway ###################################

# The gateway allows for persisting the cluster state between full cluster
# restarts. Every change to the state (such as adding an index) will be stored
# in the gateway, and when the cluster starts up for the first time,
# it will read its state from the gateway.

# There are several types of gateway implementations. For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-gateway.html>.

# The default gateway type is the "local" gateway (recommended):
#
# gateway.type: local

# Settings below control how and when to start the initial recovery process on
# a full cluster restart (to reuse as much local data as possible when using shared
# gateway).

# Allow recovery process after N nodes in a cluster are up:
#
# gateway.recover_after_nodes: 1

# Set the timeout to initiate the recovery process, once the N nodes
# from previous setting are up (accepts time value):
#
# gateway.recover_after_time: 5m

# Set how many nodes are expected in this cluster. Once these N nodes
# are up (and recover_after_nodes is met), begin recovery process immediately
# (without waiting for recover_after_time to expire):
#
#
# gateway.expected_nodes: 2


############################# Recovery Throttling #############################

# These settings allow to control the process of shards allocation between
# nodes during initial recovery, replica allocation, rebalancing,
# or when adding and removing nodes.

# Set the number of concurrent recoveries happening on a node:
#
# 1. During the initial recovery
#
# cluster.routing.allocation.node_initial_primaries_recoveries: 4
#
# 2. During adding/removing nodes, rebalancing, etc
#
# cluster.routing.allocation.node_concurrent_recoveries: 2

# Set to throttle throughput when recovering (eg. 100mb, by default 20mb):
#
# indices.recovery.max_bytes_per_sec: 20mb

# Set to limit the number of open concurrent streams when
# recovering a shard from a peer:
#
# indices.recovery.concurrent_streams: 5


################################## Discovery ##################################

# Discovery infrastructure ensures nodes can be found within a cluster
# and master node is elected. Multicast discovery is the default.

# Set to ensure a node sees N other master eligible nodes to be considered
# operational within the cluster. Its recommended to set it to a higher value
# than 1 when running more than 2 nodes in the cluster.
#
# discovery.zen.minimum_master_nodes: 1

# Set the time to wait for ping responses from other nodes when discovering.
# Set this option to a higher value on a slow or congested network
# to minimize discovery failures:
#
# discovery.zen.ping.timeout: 3s

# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-zen.html>

# Unicast discovery allows to explicitly control which nodes will be used
# to discover the cluster. It can be used when multicast is not present,
# or to restrict the cluster communication-wise.
#
# 1. Disable multicast discovery (enabled by default):
#
# discovery.zen.ping.multicast.enabled: false
#
# 2. Configure an initial list of master nodes in the cluster
# to perform discovery when new nodes (master or data) are started:
#
# discovery.zen.ping.unicast.hosts: ["host1", "host2:port"]

# EC2 discovery allows to use AWS EC2 API in order to perform discovery.
#
# You have to install the cloud-aws plugin for enabling the EC2 discovery.
#
# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-ec2.html>
#
# See <http://elasticsearch.org/tutorials/elasticsearch-on-ec2/>
# for a step-by-step tutorial.


################################## Slow Log ##################################

# Shard level query and fetch threshold logging.

#index.search.slowlog.threshold.query.warn: 10s
#index.search.slowlog.threshold.query.info: 5s
#index.search.slowlog.threshold.query.debug: 2s
#index.search.slowlog.threshold.query.trace: 500ms

#index.search.slowlog.threshold.fetch.warn: 1s
#index.search.slowlog.threshold.fetch.info: 800ms
#index.search.slowlog.threshold.fetch.debug: 500ms
#index.search.slowlog.threshold.fetch.trace: 200ms

#index.indexing.slowlog.threshold.index.warn: 10s
#index.indexing.slowlog.threshold.index.info: 5s
#index.indexing.slowlog.threshold.index.debug: 2s
#index.indexing.slowlog.threshold.index.trace: 500ms

################################## GC Logging ################################

#monitor.jvm.gc.young.warn: 1000ms
#monitor.jvm.gc.young.info: 700ms
#monitor.jvm.gc.young.debug: 400ms

#monitor.jvm.gc.old.warn: 10s
#monitor.jvm.gc.old.info: 5s
#monitor.jvm.gc.old.debug: 2s

最佳答案

您需要调整您的配置文件。以下是节点 A 和节点 B 的示例设置

一些基本规则:

  1. 属于同一集群的节点的集群名称应该相同。
  2. 至少有一个节点应该是主节点。
  3. 节点应该有唯一的名字。(如果没有设置随机漫威角色)

节点A:

cluster.name: mycluster
node.name: "nodeA"
node.master: true
node.data: true
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["nodeA.example.com"]

节点 B:

cluster.name: mycluster
node.name: "nodeB"
node.master: false
node.data: true
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["nodeA.example.com"]

关于macos - elasticsearch:自动节点发现没有发生,遗漏了什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21611254/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com