- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在 32 位机器上运行 MySQL 5.1,我使用 Hibernate 条件生成下面的查询;出于某种原因,我不明白执行需要 30 秒,即使根据“解释”所说的,没有执行全表扫描。
我们有完整的股票、stocks_groups、指标、indicator_definition(加上其他不那么相关的表,如国家、交易所...)。 stocks 表包含大约 18000 行,groups 表大约有 3000 行,indicators 表有超过 710,000 行。所有表都使用自动生成的 id 列,我在由(id、stock_id 和 definition_id)组成的指标表中创建了一个额外的索引。如果我从查询中删除指标,它会在 0.030 秒内执行,这是我所期望的,所以我的猜测是那里一定有问题,但我对数据库的了解有限,我一直在寻找一个解决方案。
任何帮助将不胜感激,
提前致谢
泽比尔。
查询:
explain select
this_.id as id232_12_,
this_.created_on as created2_232_12_,
this_.updated_on as updated3_232_12_,
this_.version as version232_12_,
this_.autoupdate as autoupdate232_12_,
this_.bloomberg as bloomberg232_12_,
this_.currency_id as currency19_232_12_,
this_.cusip as cusip232_12_,
this_.disabled as disabled232_12_,
this_.exchange_id as exchange20_232_12_,
this_.isin as isin232_12_,
this_.name as name232_12_,
this_.price_composition as price11_232_12_,
this_.region_id as region21_232_12_,
this_.reuters as reuters232_12_,
this_.sedol as sedol232_12_,
this_.status_message_last_update as status14_232_12_,
this_.status_message_severity as status15_232_12_,
this_.status_message_text as status16_232_12_,
this_.ticker as ticker232_12_,
this_.trading_days_id as trading22_232_12_,
this_.type as type232_12_,
currency4_.id as id220_0_,
currency4_.created_on as created2_220_0_,
currency4_.updated_on as updated3_220_0_,
currency4_.version as version220_0_,
currency4_.code as code220_0_,
currency4_.long_name as long6_220_0_,
currency4_.short_name as short7_220_0_,
currency4_.symbol as symbol220_0_,
groups5_.stock_id as stock1_14_,
groups_als1_.id as group2_14_,
groups_als1_.id as id223_1_,
groups_als1_.created_on as created3_223_1_,
groups_als1_.updated_on as updated4_223_1_,
groups_als1_.version as version223_1_,
groups_als1_.active as active223_1_,
groups_als1_.alt_name as alt7_223_1_,
groups_als1_.code as code223_1_,
groups_als1_.locked as locked223_1_,
groups_als1_.name as name223_1_,
groups_als1_.parent_id as parent12_223_1_,
groups_als1_.position as position223_1_,
groups_als1_.primary_index_id as primary13_223_1_,
groups_als1_.type_id as type14_223_1_,
groups_als1_.kind as kind223_1_,
parent_als2_.id as id223_2_,
parent_als2_.created_on as created3_223_2_,
parent_als2_.updated_on as updated4_223_2_,
parent_als2_.version as version223_2_,
parent_als2_.active as active223_2_,
parent_als2_.alt_name as alt7_223_2_,
parent_als2_.code as code223_2_,
parent_als2_.locked as locked223_2_,
parent_als2_.name as name223_2_,
parent_als2_.parent_id as parent12_223_2_,
parent_als2_.position as position223_2_,
parent_als2_.primary_index_id as primary13_223_2_,
parent_als2_.type_id as type14_223_2_,
parent_als2_.kind as kind223_2_,
stock8_.id as id232_3_,
stock8_.created_on as created2_232_3_,
stock8_.updated_on as updated3_232_3_,
stock8_.version as version232_3_,
stock8_.autoupdate as autoupdate232_3_,
stock8_.bloomberg as bloomberg232_3_,
stock8_.currency_id as currency19_232_3_,
stock8_.cusip as cusip232_3_,
stock8_.disabled as disabled232_3_,
stock8_.exchange_id as exchange20_232_3_,
stock8_.isin as isin232_3_,
stock8_.name as name232_3_,
stock8_.price_composition as price11_232_3_,
stock8_.region_id as region21_232_3_,
stock8_.reuters as reuters232_3_,
stock8_.sedol as sedol232_3_,
stock8_.status_message_last_update as status14_232_3_,
stock8_.status_message_severity as status15_232_3_,
stock8_.status_message_text as status16_232_3_,
stock8_.ticker as ticker232_3_,
stock8_.trading_days_id as trading22_232_3_,
stock8_.type as type232_3_,
grouptype9_.id as id224_4_,
grouptype9_.created_on as created2_224_4_,
grouptype9_.updated_on as updated3_224_4_,
grouptype9_.version as version224_4_,
grouptype9_.name as name224_4_,
components10_.virtual_group_id as virtual2_14_,
components10_.group_id as group1_14_,
components10_.group_id as group1_225_5_,
components10_.virtual_group_id as virtual2_225_5_,
components10_.operator as operator225_5_,
components10_.operator_name as operator4_225_5_,
components10_.sequence as sequence225_5_,
indicators11_.stock_id as stock23_15_,
indicators11_.id as id15_,
indicators11_.id as id226_6_,
indicators11_.created_on as created3_226_6_,
indicators11_.updated_on as updated4_226_6_,
indicators11_.version as version226_6_,
indicators11_.definition_id as definition22_226_6_,
indicators11_.stock_id as stock23_226_6_,
indicators11_.dbl_delta1 as dbl6_226_6_,
indicators11_.dbl_value1 as dbl7_226_6_,
indicators11_.bool_delta1 as bool8_226_6_,
indicators11_.bool_value1 as bool9_226_6_,
indicators11_.bool_delta2 as bool10_226_6_,
indicators11_.bool_value2 as bool11_226_6_,
indicators11_.int_delta1 as int12_226_6_,
indicators11_.int_value1 as int13_226_6_,
indicators11_.dbl_delta2 as dbl14_226_6_,
indicators11_.dbl_value2 as dbl15_226_6_,
indicators11_.dbl_delta3 as dbl16_226_6_,
indicators11_.dbl_value3 as dbl17_226_6_,
indicators11_.date_set as date18_226_6_,
indicators11_.relative_id as relative24_226_6_,
indicators11_.is_support as is19_226_6_,
indicators11_.int_delta2 as int20_226_6_,
indicators11_.int_value2 as int21_226_6_,
indicators11_.type as type226_6_,
indicatord12_.id as id227_7_,
indicatord12_.created_on as created2_227_7_,
indicatord12_.updated_on as updated3_227_7_,
indicatord12_.version as version227_7_,
indicatord12_.code as code227_7_,
indicatord12_.descrip as descrip227_7_,
indicatord12_.format as format227_7_,
indicatord12_.name as name227_7_,
indicatord12_.numberformat as numberfo9_227_7_,
stock13_.id as id232_8_,
stock13_.created_on as created2_232_8_,
stock13_.updated_on as updated3_232_8_,
stock13_.version as version232_8_,
stock13_.autoupdate as autoupdate232_8_,
stock13_.bloomberg as bloomberg232_8_,
stock13_.currency_id as currency19_232_8_,
stock13_.cusip as cusip232_8_,
stock13_.disabled as disabled232_8_,
stock13_.exchange_id as exchange20_232_8_,
stock13_.isin as isin232_8_,
stock13_.name as name232_8_,
stock13_.price_composition as price11_232_8_,
stock13_.region_id as region21_232_8_,
stock13_.reuters as reuters232_8_,
stock13_.sedol as sedol232_8_,
stock13_.status_message_last_update as status14_232_8_,
stock13_.status_message_severity as status15_232_8_,
stock13_.status_message_text as status16_232_8_,
stock13_.ticker as ticker232_8_,
stock13_.trading_days_id as trading22_232_8_,
stock13_.type as type232_8_,
stockregio14_.id as id218_9_,
stockregio14_.created_on as created3_218_9_,
stockregio14_.updated_on as updated4_218_9_,
stockregio14_.version as version218_9_,
stockregio14_.code as code218_9_,
stockregio14_.name as name218_9_,
stockregio14_.group_id as group9_218_9_,
stockregio14_.type as type218_9_,
group15_.id as id223_10_,
group15_.created_on as created3_223_10_,
group15_.updated_on as updated4_223_10_,
group15_.version as version223_10_,
group15_.active as active223_10_,
group15_.alt_name as alt7_223_10_,
group15_.code as code223_10_,
group15_.locked as locked223_10_,
group15_.name as name223_10_,
group15_.parent_id as parent12_223_10_,
group15_.position as position223_10_,
group15_.primary_index_id as primary13_223_10_,
group15_.type_id as type14_223_10_,
group15_.kind as kind223_10_,
tradingday16_.id as id233_11_,
tradingday16_.created_on as created2_233_11_,
tradingday16_.updated_on as updated3_233_11_,
tradingday16_.version as version233_11_,
tradingday16_.traded_on_friday as traded5_233_11_,
tradingday16_.traded_on_monday as traded6_233_11_,
tradingday16_.traded_on_saturday as traded7_233_11_,
tradingday16_.traded_on_sunday as traded8_233_11_,
tradingday16_.traded_on_thursday as traded9_233_11_,
tradingday16_.traded_on_tuesday as traded10_233_11_,
tradingday16_.traded_on_wednesday as traded11_233_11_
from
stocks this_
left outer join
currencies currency4_
on this_.currency_id=currency4_.id
inner join
stocks_groups groups5_
on this_.id=groups5_.stock_id
inner join
groups groups_als1_
on groups5_.group_id=groups_als1_.id
inner join
groups parent_als2_
on groups_als1_.parent_id=parent_als2_.id
left outer join
stocks stock8_
on groups_als1_.primary_index_id=stock8_.id
left outer join
group_types grouptype9_
on groups_als1_.type_id=grouptype9_.id
left outer join
virtual_groups_components components10_
on groups_als1_.id=components10_.virtual_group_id
left outer join
indicators indicators11_
on this_.id=indicators11_.stock_id
left outer join
indicator_definitions indicatord12_
on indicators11_.definition_id=indicatord12_.id
left outer join
stocks stock13_
on indicators11_.relative_id=stock13_.id
inner join
regions stockregio14_
on this_.region_id=stockregio14_.id
left outer join
groups group15_
on stockregio14_.group_id=group15_.id
inner join
stock_trading_days tradingday16_
on this_.trading_days_id=tradingday16_.id
where
(
groups_als1_.id in (
208, 193, 224, 1745, 216, 1746, 1793, 218, 1747, 223, 204, 203, 209, 217, 1547, 1326, 127, 1744, 210, 212, 202, 1325, 2051, 215, 185, 1720, 197, 1721, 205, 1749, 194, 211, 195, 206, 1323, 184, 213, 220, 201, 207, 219, 1748, 196, 1071, 200
)
)
order by
parent_als2_.position asc,
groups_als1_.position asc,
this_.name asc;
我将 explain 的结果粘贴为 csv,因为我不知道有任何其他方式可以以更易于使用的格式呈现它。
解释的输出:
"id","select_type","table","type","possible_keys","key","key_len","ref","rows","Extra"
1,"SIMPLE","groups_als1_","range","PRIMARY,FKB63DD9D428E54565","PRIMARY","8","",45,"Using where; Using temporary; Using filesort"
1,"SIMPLE","parent_als2_","eq_ref","PRIMARY","PRIMARY","8","pr2.groups_als1_.parent_id",1,""
1,"SIMPLE","stock8_","eq_ref","PRIMARY","PRIMARY","8","pr2.groups_als1_.primary_index_id",1,""
1,"SIMPLE","grouptype9_","eq_ref","PRIMARY","PRIMARY","8","pr2.groups_als1_.type_id",1,""
1,"SIMPLE","components10_","ref","FK91F4CE2D598958ED","FK91F4CE2D598958ED","8","pr2.groups_als1_.id",1,""
1,"SIMPLE","groups5_","ref","PRIMARY,FKA35A80369A4E438E,FKA35A8036A0A8A367,FKA35A8036CBAD0B70","FKA35A8036CBAD0B70","8","pr2.groups_als1_.id",4,"Using index"
1,"SIMPLE","tradingday16_","ALL","PRIMARY","","","",2,"Using join buffer"
1,"SIMPLE","this_","eq_ref","PRIMARY,FKCAD3EC1D1A5585AA,FKCAD3EC1DE15DC635","PRIMARY","8","pr2.groups5_.stock_id",1,"Using where"
1,"SIMPLE","currency4_","eq_ref","PRIMARY","PRIMARY","8","pr2.this_.currency_id",1,""
1,"SIMPLE","stockregio14_","eq_ref","PRIMARY","PRIMARY","8","pr2.this_.region_id",1,""
1,"SIMPLE","group15_","eq_ref","PRIMARY","PRIMARY","8","pr2.stockregio14_.group_id",1,""
1,"SIMPLE","indicators11_","ref","FKDC680444A0A8A367","FKDC680444A0A8A367","9","pr2.groups5_.stock_id",21,""
1,"SIMPLE","indicatord12_","eq_ref","PRIMARY","PRIMARY","8","pr2.indicators11_.definition_id",1,""
1,"SIMPLE","stock13_","eq_ref","PRIMARY","PRIMARY","8","pr2.indicators11_.relative_id",1,""
最佳答案
好的,这是一个相当大的查询,但是,它取决于每个表上的索引,如果您将 where 子句移动到 als1 表上的连接,这应该会有所帮助,因为目前您正在创建所有加入,然后在最后说“哦,我只想要这一点”
你能确认所有id字段都有索引吗?
关于mysql - 复杂查询耗时 30 秒,无全表扫描,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/5531112/
目前我正在构建相当大的网络系统,我需要强大的 SQL 数据库解决方案。我选择 Mysql 而不是 Postgres,因为一些任务需要只读(MyISAM 引擎)而其他任务需要大量写入(InnoDB)。
我在 mysql 中使用如下命令。当它显示表格数据时,它被格式化为一个非常干净的表格,间距均匀且 |作为列分隔符。 SELECT * FROM TABLE_NAME; 当我从 CLI 运行命令时,如下
我知道这个问题之前已经被问过好几次了,我已经解决了很多问题,但到目前为止没有任何效果。 MySQL 试图将自身安装到的目录 (usr/local/mysql) 肯定有问题。关于我的错误的奇怪之处在于我
以下是我的 SQL 数据结构,我正在尝试如下两个查询: Select Wrk_ID, Wrk_LastName, Skill_Desc from Worker, Skill where
我们有一个本地 mysql 服务器(不在公共(public)域上),并希望将该服务器复制到我们拥有的 google 云 sql 实例。我的问题是:1.这可能吗?2.我们的本地服务器只能在本地网络上访问
我有一个表(test_table),其中一些字段值(例如字段 A、B 和 C)是从外部应用程序插入的,还有一个字段(字段 D),我想从现有表(store_table)插入其值,但在插入前者(A、B 和
我想创建一个 AWS RDS 实例,然后使用 terraform 管理数据库用户。因此,首先,我创建了一个 RDS 实例,然后使用创建的 RDS 实例初始化 mysql 提供程序,以进一步将其用于用户
当用户在我的网站上注册时,他们会在我的一个数据库中创建自己的表格。该表存储用户发布的所有帖子。我还想做的是也为他们生成自己的 MySql 用户——该用户仅有权从他们的表中读取、写入和删除。 创建它应该
我有一个关于 ColdFusion 和 Mysql 的问题。我有两个表:PRODUCT 和 PRODUCT_CAT。我想列出包含一些标记为:IS_EXTRANET=1 的特殊产品的类别。所以我写了这个
我想获取 recipes_id 列的值,以获取包含 ingredient_id 的 2,17 和 26 条目的值。 假设 ingredient_id 2 丢失则不获取记录。 我已经尝试过 IN 运算符
在 Ubuntu 中,我通常安装两者,但 MySQL 的客户端和服务器之间有什么区别。 作为奖励,当一个新语句提到它需要 MySQL 5.x 时,它是指客户端、服务器还是两者兼而有之。例如这个链接ht
我重新访问了我的数据库并注意到我有一些 INT 类型的主键。 这还不够独特,所以我想我会有一个指导。 我来自微软 sql 背景,在 ssms 中你可以 选择类型为“uniqeidentifier”并自
我的系统上有 MySQL,我正在尝试确定它是 Oracle MySQL 还是 MySQL。 Oracle MySQL 有区别吗: http://www.oracle.com/us/products/m
我是在生产 MySQL 中运行的应用程序的新维护者。之前的维护者已经离开,留下的文档很少,而且联系不上了。 我面临的问题是执行以下请求大约需要 10 秒: SELECT COUNT(*) FROM `
我有两个位于不同机器上的 MySQL 数据库。我想自动将数据从一台服务器传输到另一台服务器。比方说,我希望每天早上 4:00 进行数据传输。 可以吗?是否有任何 MySQL 内置功能可以让我们做到这一
有什么方法可以使用 jdbc 查询位于 mysql 根目录之外的目录中的 mysql 表,还是必须将它们移动到 mysql 根目录内的数据库文件夹中?我在 Google 上搜索时没有找到任何东西。 最
我在 mysql 数据库中有两个表。成员和 ClassNumbers。两个表都有一个付费年份字段,都有一个代码字段。我想用代码数字表中的值更新成员表中的付费年份,其中成员中的代码与 ClassNumb
情况:我有 2 台服务器,其中一台当前托管一个实时 WordPress 站点,我希望能够将该站点转移到另一台服务器,以防第一台服务器出现故障。传输源文件很容易;传输数据库是我需要弄清楚如何做的。两台服
Phpmyadmin 有一个功能是“复制数据库到”..有没有mysql查询来写这个函数?类似于将 db A 复制到新的 db B。 最佳答案 首先创建复制数据库: CREATE DATABASE du
我有一个使用 mySQL 作为后端的库存软件。我已经在我的计算机上对其进行了测试,并且运行良好。 当我在计算机上安装我的软件时,我必须执行以下步骤: 安装 mySQL 服务器 将用户名指定为“root
我是一名优秀的程序员,十分优秀!