gpt4 book ai didi

python - 从字典写入 numpy 数组

转载 作者:行者123 更新时间:2023-11-28 23:01:40 29 4
gpt4 key购买 nike

我有一个文件 header value 字典(时间、帧数、年、月等),我想将其写入一个 numpy 数组。我目前的代码如下:

    arr=np.array([(k,)+v for k,v in fileheader.iteritems()],dtype=["a3,a,i4,i4,i4,i4,f8,i4,i4,i4,i4,i4,i4,a10,a26,a33,a235,i4,i4,i4,i4,i4,i4"])

但我得到一个错误,“只能将元组(而不是“int”)连接到元组。

基本上,最终结果需要是存储整个文件头信息(512 字节)和每帧数据(头和数据,每帧 49408 字节)的数组。有更简单的方法吗?

编辑:为了澄清(也为我自己),我需要将文件每一帧的数据写入一个数组。我得到了 matlab 代码作为基础。这是给我的代码的粗略概念:

data.frame=zeros([512 96])
frame=uint8(fread(fid,[data.numbeams,512]),'uint8'))
data.frame=frame

如何将“框架”翻译成 Python?

最佳答案

您最好只将 header 数据保存在字典中。你真的需要它作为一个数组吗? (如果是,为什么?将 header 放在 numpy 数组中有一些优点,但它比简单的 dict 更复杂,而且不那么灵活。)

dict 的一个缺点是它的键没有可预测的顺序。如果您需要以常规顺序(类似于 C 结构)将 header 写回磁盘,则需要单独存储字段的顺序及其值。如果是这种情况,您可能会考虑一个有序的字典 (collections.OrderedDict) 或只是将一个简单的类放在一起来保存您的 header 数据并将订单存储在那里。

除非有充分的理由将其放入 numpy 数组中,否则您可能不想这样做。

但是,结构化数组将保留 header 的顺序,并使将其二进制表示形式写入磁盘变得更加容易,但在其他方面却不够灵活。

如果你确实想让标题成为一个数组,你会做这样的事情:

import numpy as np

# Lists can be modified, but preserve order. That's important in this case.
names = ['Name1', 'Name2', 'Name3']
# It's "S3" instead of "a3" for a string field in numpy, by the way
formats = ['S3', 'i4', 'f8']

# It's often cleaner to specify the dtype this way instead of as a giant string
dtype = dict(names=names, formats=formats)

# This won't preserve the order we're specifying things in!!
# If we iterate through it, things may be in any order.
header = dict(Name1='abc', Name2=456, Name3=3.45)

# Therefore, we'll be sure to pass things in in order...
# Also, np.array will expect a tuple instead of a list for a structured array...
values = tuple(header[name] for name in names)
header_array = np.array(values, dtype=dtype)

# We can access field in the array like this...
print header_array['Name2']

# And dump it to disk (similar to a C struct) with
header_array.tofile('test.dat')

另一方面,如果您只想访问 header 中的值,只需将其保存为 dict。那样更简单。


根据听起来你正在做的事情,我会做这样的事情。我正在使用 numpy 数组读取 header ,但 header 值实际上存储为类属性(以及 header 数组)。

这看起来比实际更复杂。

我只是定义了两个新类,一个用于父文件,一个用于框架。您可以用更少的代码来做同样的事情,但这为您打下了处理更复杂事情的基础。

import numpy as np

class SonarFile(object):
# These define the format of the file header
header_fields = ('num_frames', 'name1', 'name2', 'name3')
header_formats = ('i4', 'f4', 'S10', '>I4')

def __init__(self, filename):
self.infile = open(filename, 'r')
dtype = dict(names=self.header_fields, formats=self.header_formats)

# Read in the header as a numpy array (count=1 is important here!)
self.header = np.fromfile(self.infile, dtype=dtype, count=1)

# Store the position so we can "rewind" to the end of the header
self.header_length = self.infile.tell()

# You may or may not want to do this (If the field names can have
# spaces, it's a bad idea). It will allow you to access things with
# sonar_file.Name1 instead of sonar_file.header['Name1'], though.
for field in self.header_fields:
setattr(self, field, self.header[field])

# __iter__ is a special function that defines what should happen when we
# try to iterate through an instance of this class.
def __iter__(self):
"""Iterate through each frame in the dataset."""
# Rewind to the end of the file header
self.infile.seek(self.header_length)

# Iterate through frames...
for _ in range(self.num_frames):
yield Frame(self.infile)

def close(self):
self.infile.close()

class Frame(object):
header_fields = ('width', 'height', 'name')
header_formats = ('i4', 'i4', 'S20')
data_format = 'f4'

def __init__(self, infile):
dtype = dict(names=self.header_fields, formats=self.header_formats)
self.header = np.fromfile(infile, dtype=dtype, count=1)

# See discussion above...
for field in self.header_fields:
setattr(self, field, self.header[field])

# I'm assuming that the size of the frame is in the frame header...
ncols, nrows = self.width, self.height

# Read the data in
self.data = np.fromfile(infile, self.data_format, count=ncols * nrows)

# And reshape it into a 2d array.
# I'm assuming C-order, instead of Fortran order.
# If it's fortran order, just do "data.reshape((ncols, nrows)).T"
self.data = self.data.reshape((nrows, ncols))

你会像这样使用它:

dataset = SonarFile('input.dat')

for frame in dataset:
im = frame.data
# Do something...

关于python - 从字典写入 numpy 数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10838982/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com