gpt4 book ai didi

python - 我怎么知道python中某些坐标(存储在列表中)的二进制图像中是否有白色像素?

转载 作者:行者123 更新时间:2023-11-28 22:53:15 28 4
gpt4 key购买 nike

我有一个 numpy array binary (黑白)图像和元组列表中的坐标,例如:

coordlist =[(110, 110), (110, 111), (110, 112), (110, 113), (110, 114), (110, 115), (110, 116), (110, 117), (110, 118), (110, 119), (110, 120), (100, 110), (101, 111), (102, 112), (103, 113), (104, 114), (105, 115), (106, 116), (107, 117), (108, 118), (109, 119), (110, 120)]

或作为:

coordx = [110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110]
coordy = [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120]

如何检查具有该坐标列表的图像中是否有“白色”像素?我还想检查远离该坐标列表的 3 个像素范围内的白色像素。

即:

for i, j in coordx, coordy:
for k in a range (k-3, k + 3)
for l in a range (l-3, l + 3)
#checking white pixels also for pixel near coordinates list

我想到了“where”函数。

from skimage import morphology
import numpy as np

path = 'image/a.jpg'
col = mh.imread(path)
bn0 = col[:,:,0]
bn = (bn0 < 127)
bnsk = morphology.skeletonize(bn)
bnskInt = np.array(bnsk, dtype=np.uint8)

#finding if there are white pixel in the coord list and around that in a 5 pixel range
for i in coordlist:
np.where(?)

更新

我尝试使用形状 (128, 128) 而不是 (128, 128, 3) 因为我的图像具有这种形状:(a,b) 但现在它找不到白色像素!为什么它以这种方式找到任何东西?

    white_pixel = np.array([255, 255])
img = np.random.randint(0, 256, (128, 128))
print(img[150])
print(img.shape)
img[110, 110] = 255
img[109, 110] = 255

mask = np.zeros((128, 128), dtype=bool)
mask[coordx, coordy] = 1
#structure = np.ones((3, 3, 1))
#mask = scipy.ndimage.morphology.binary_dilation(mask, structure)

is_white = np.all((img * mask) == white_pixel, axis=-1)

# This will tell you which pixels are white
print np.where(is_white)

# This will tell you if any pixels are white
print np.any(is_white)

输出:

(array([], dtype=int32),)
False

最佳答案

更新,我已经更新了使用二进制或灰度图像的答案。请注意,图像强度现在只是标量而不是 (R, G, B) 值,并且所有图像、蒙版和结构元素都是 2 维数组而不是 3 维数组。您可能需要调整 white_pixel 的值(或以其他方式修改此代码以满足您的需要)。

import numpy as np
from skimage.morphology import binary_dilation
# Setup
coordx = [110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110]
coordy = [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120]
img = np.random.random((128, 128))
img[110, 110] = 1.
img[109, 110] = 1.


# values grater than white_pixel will get detected as white pixels
white_pixel = 1

mask = np.zeros((128, 128), dtype=bool)
mask[coordx, coordy] = 1

structure = np.ones((7, 7))
mask = binary_dilation(mask, structure)

is_white = (img * mask) >= white_pixel

# This will tell you which pixels are white
print np.where(is_white)

# This will tell you if any pixels are white
print np.any(is_white)

原答案:

如果您想知道哪些像素是白色,您只需要使用numpy.where。我只是将图像乘以掩码并使用 np.any,如下所示:

# Setup
coordx = [110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110]
coordy = [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120]
white_pixel = np.array([255, 255, 255])
img = np.random.randint(0, 256, (128, 128, 3))
img[110, 110, :] = 255
img[109, 110, :] = 255

mask = np.zeros((128, 128, 1), dtype=bool)
mask[coordx, coordy] = 1

structure = np.ones((7, 7, 1))
mask = binary_dilation(mask, structure)

is_white = np.all((img * mask) == white_pixel, axis=-1)

# This will tell you which pixels are white
print np.where(is_white)

# This will tell you if any pixels are white
print np.any(is_white)

关于python - 我怎么知道python中某些坐标(存储在列表中)的二进制图像中是否有白色像素?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19619996/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com