- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我试图找出 ClassificationDataSet
的参数 target
有什么用,但我仍然不清楚。
>>> from pybrain.datasets import ClassificationDataSet
>>> help(ClassificationDataSet)
Help on class ClassificationDataSet in module pybrain.datasets.classification:
class ClassificationDataSet(pybrain.datasets.supervised.SupervisedDataSet)
| Specialized data set for classification data. Classes are to be numbered from 0 to nb_classes-1.
|
| Method resolution order:
| ClassificationDataSet
| pybrain.datasets.supervised.SupervisedDataSet
| pybrain.datasets.dataset.DataSet
| pybrain.utilities.Serializable
| __builtin__.object
|
| Methods defined here:
|
| __add__(self, other)
| Adds the patterns of two datasets, if dimensions and type match.
|
| __init__(self, inp, target=1, nb_classes=0, class_labels=None)
| Initialize an empty dataset.
|
| `inp` is used to specify the dimensionality of the input. While the
| number of targets is given by implicitly by the training samples, it can
| also be set explicity by `nb_classes`. To give the classes names, supply
| an iterable of strings as `class_labels`.
|
| __reduce__(self)
因为这不包含有关目标的信息(除了它默认为 1)我看了一下 source code of ClassificationDataSet :
class ClassificationDataSet(SupervisedDataSet):
""" Specialized data set for classification data. Classes are to be numbered from 0 to nb_classes-1. """
def __init__(self, inp, target=1, nb_classes=0, class_labels=None):
"""Initialize an empty dataset.
`inp` is used to specify the dimensionality of the input. While the
number of targets is given by implicitly by the training samples, it can
also be set explicity by `nb_classes`. To give the classes names, supply
an iterable of strings as `class_labels`."""
# FIXME: hard to keep nClasses synchronized if appendLinked() etc. is used.
SupervisedDataSet.__init__(self, inp, target)
self.addField('class', 1)
self.nClasses = nb_classes
if len(self) > 0:
# calculate class histogram, if we already have data
self.calculateStatistics()
self.convertField('target', int)
if class_labels is None:
self.class_labels = list(set(self.getField('target').flatten()))
else:
self.class_labels = class_labels
# copy classes (may be changed into other representation)
self.setField('class', self.getField('target'))
还不清楚,所以我看了SupervisedDataSet :
class SupervisedDataSet(DataSet):
"""SupervisedDataSets have two fields, one for input and one for the target.
"""
def __init__(self, inp, target):
"""Initialize an empty supervised dataset.
Pass `inp` and `target` to specify the dimensions of the input and
target vectors."""
DataSet.__init__(self)
if isscalar(inp):
# add input and target fields and link them
self.addField('input', inp)
self.addField('target', target)
else:
self.setField('input', inp)
self.setField('target', target)
self.linkFields(['input', 'target'])
# reset the index marker
self.index = 0
# the input and target dimensions
self.indim = self.getDimension('input')
self.outdim = self.getDimension('target')
好像是关于输出维度的。但是 target
不应该是 nb_classes
吗?
最佳答案
target
参数是训练样本输出维度的维度。要完全理解它与 nb_classes
之间的区别,让我们看一下 _convertToOneOfMany
方法:
def _convertToOneOfMany(self, bounds=(0, 1)):
"""Converts the target classes to a 1-of-k representation, retaining the
old targets as a field `class`.
To supply specific bounds, set the `bounds` parameter, which consists of
target values for non-membership and membership."""
if self.outdim != 1:
# we already have the correct representation (hopefully...)
return
if self.nClasses <= 0:
self.calculateStatistics()
oldtarg = self.getField('target')
newtarg = zeros([len(self), self.nClasses], dtype='Int32') + bounds[0]
for i in range(len(self)):
newtarg[i, int(oldtarg[i])] = bounds[1]
self.setField('target', newtarg)
self.setField('class', oldtarg)
所以从理论上讲,target
是输出的维度,而 nb_classes
是分类类的数量。这对于数据转换很有用。例如,假设我们在 xor
函数中有用于训练网络的数据,如下所示:
IN OUT
[0,0],0
[0,1],1
[1,0],1
[1,1],0
所以输出的维度等于一,但是有两个输出类:0和1。所以我们可以将我们的数据更改为:
IN OUT
[0,0],(0,1)
[0,1],(1,0)
[1,0],(1,0)
[1,1],(0,1)
现在输出的第一个参数是True
的值,第二个是False
的值。这是更多类的常见做法,例如手写识别。
希望这个精简版能帮到你。
关于python - `target` 中的 `ClassificationDataSet` 有什么用?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24231157/
我试图找出 ClassificationDataSet 的参数 target 有什么用,但我仍然不清楚。 我尝试过的 >>> from pybrain.datasets import Classifi
我正在尝试使用 Pybrain 神经网络以及专门的 ClassificationDataSet 构建第一个分类器,但我不确定我是否完全理解它的工作原理。 所以我有一个 pandas 数据框,其中包含
我是一名优秀的程序员,十分优秀!