- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在创建这个数组:
A=itertools.combinations(range(6),2)
我必须用 numpy 操作这个数组,比如:
A.reshape(..
如果维度 A 很高,则命令 list(A)
太慢。
更新 1:我试过 hpaulj 的解决方案,在这种特定情况下有点慢,知道吗?
start=time.clock()
A=it.combinations(range(495),3)
A=np.array(list(A))
print A
stop=time.clock()
print stop-start
start=time.clock()
A=np.fromiter(it.chain(*it.combinations(range(495),3)),dtype=int).reshape (-1,3)
print A
stop=time.clock()
print stop-start
结果:
[[ 0 1 2]
[ 0 1 3]
[ 0 1 4]
...,
[491 492 494]
[491 493 494]
[492 493 494]]
10.323822
[[ 0 1 2]
[ 0 1 3]
[ 0 1 4]
...,
[491 492 494]
[491 493 494]
[492 493 494]]
12.289898
最佳答案
我重新打开它是因为我不喜欢链接的答案。接受的答案建议使用
np.array(list(A)) # producing a (15,2) array
但是 OP 显然已经尝试过 list(A)
,并发现它很慢。
另一个答案建议使用 np.fromiter
。但隐藏在其注释中的是 fromiter
需要一维数组的注释。
In [102]: A=itertools.combinations(range(6),2)
In [103]: np.fromiter(A,dtype=int)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-103-29db40e69c08> in <module>()
----> 1 np.fromiter(A,dtype=int)
ValueError: setting an array element with a sequence.
因此,将 fromiter
与此 itertools 一起使用需要以某种方式展平迭代器。
一组快速计时表明 list
不是缓慢的步骤。它将列表转换为缓慢的数组:
In [104]: timeit itertools.combinations(range(6),2)
1000000 loops, best of 3: 1.1 µs per loop
In [105]: timeit list(itertools.combinations(range(6),2))
100000 loops, best of 3: 3.1 µs per loop
In [106]: timeit np.array(list(itertools.combinations(range(6),2)))
100000 loops, best of 3: 14.7 µs per loop
我认为使用 fromiter
的最快方法是通过 itertools.chain
的惯用用法来扁平化 combinations
:
In [112]: timeit
np.fromiter(itertools.chain(*itertools.combinations(range(6),2)),dtype=int)
.reshape(-1,2)
100000 loops, best of 3: 12.1 µs per loop
并没有节省多少时间,至少在这么小的尺寸上是这样。 (fromiter
也需要一个 count
,这又减少了 µs。对于更大的情况,range(60)
,fromiter
占用的时间是 array
的一半。
在 [numpy] itertools
上快速搜索会发现一些关于生成所有组合的纯 numpy 方法的建议。 itertools
速度很快,用于生成纯 Python 结构,但将它们转换为数组是一个缓慢的步骤。
问题的挑剔之处。
A
是生成器,而不是数组。 list(A)
确实生成了一个嵌套列表,可以粗略地描述为一个数组。但它不是 np.array
,也没有 reshape
方法。
关于python - 将 itertools 数组转换为 numpy 数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33282369/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!