gpt4 book ai didi

python - 根据字典中的值过滤 Pythons Pandas DataFrame

转载 作者:行者123 更新时间:2023-11-28 22:40:27 28 4
gpt4 key购买 nike

我有一些数据已作为 Pandas 数据框读入 Python:

             Unnamed: 0  Initial_guess  Lower_bound  Upper_bound Estimated_or_Fixed  
0 Ka 5 0.000001 10000 Estimated
2 Kd 5 0.000001 10000 Estimated
3 Ki 5 0.000001 10000 Estimated
5 Kr 5 0.000001 10000 Estimated
6 R1_I 5 0.000001 10000 Estimated
7 PR1 5 0.000001 10000 Estimated
8 PR2 5 0.000001 10000 Estimated
9 alpha 5 0.000001 10000 Estimated
10 Kcd 5 0.000001 10000 Estimated
12 Klid 5 0.000001 10000 Estimated
18 LR1R2_I 5 1.000000 10000 Estimated

Variable_type
0 Kinetic parameter
2 Kinetic parameter
3 Kinetic parameter
5 Kinetic parameter
6 Kinetic parameter
7 Kinetic parameter
8 Kinetic parameter
9 Kinetic parameter
10 Kinetic parameter
12 Kinetic parameter
18 Species IC

第一列unnamed: 0 是参数。我有很多模型,每个模型都包含这些参数的不同组合。我的任务是通过删除模型中不存在参数的任何行来为每个模型过滤此表。我有每个模型的字典以及它们包含的参数。参数可以有两种类型,species ICkinetic parameter。这是第一个模型的这些字典的示例:

Species_IC:
{'R1': '2.7109e+02', 'R2': '1.2709e+02', 'R1_I': '2.7109e+03', 'R2_I': '1.2709e+03', 'LR1R2': '1.6913e+00', 'LR1R2_I': '1.6913e+01'}

Kinetic_parameter:
{'Ka': '1.0000e+00', 'TGFb': '1.0000e-01', 'Synth': '1.0000e+00', 'PR1': '8.0000e+00', 'Sink': '0.0000e+00', 'PR2': '4.0000e+00', 'alpha': '1.0000e+00'}

我的代码:

def write_parameter_bounds_file(self):
model1=self.all_models_dirs[0] #get first model from a list of model. I'll do it on the first model then generalize to the rest.
species=self.get_model_species(model1+'.xml') #get the species dct from this model
parameters=self.get_model_parameters(model1+'.xml')#get parameter dct from this model
param_info=self.read_parameter_bounds_template() #get all parameters from template. This is the pandas dataframe at the top.
estimated_species=[]
estimated_params=[]
for i in species.keys():
print '\n'
for j in param_info[param_info.columns[0]]:
if i==j:
estimated_species.append(i)
for i in parameters.keys():
print '\n'
for j in param_info[param_info.columns[0]]:
if i==j:
estimated_params.append(i)
param_list=estimated_params+estimated_species #This is a list of the parameters that need to be included in the output df

有人知道如何使用 param_list 过滤原始 pandas df 吗?

谢谢

最佳答案

您可以使用函数 isin使用从字典生成的列表:

list_Species_IC = Species_IC.keys()

并获取数据框 df 的子集。您可以通过函数重置索引 reset_index .

字典Kinetic_parameter 可以使用类似的方法。

Species_IC = {'R1': '2.7109e+02', 'R2': '1.2709e+02', 'R1_I': '2.7109e+03', 'R2_I': '1.2709e+03', 'LR1R2': '1.6913e+00', 'LR1R2_I': '1.6913e+01'}

list_Species_IC = Species_IC.keys()
print list_Species_IC
#['R1', 'R2', 'R1_I', 'R2_I', 'LR1R2', 'LR1R2_I']
out = df[df['Unnamed: 0'].isin(list_Species_IC)].reset_index()
print out
# Unnamed: 0 Initial_guess Lower_bound Upper_bound Estimated_or_Fixed
#4 R1_I 5 0.000001 10000 Estimated
#10 LR1R2_I 5 1.000000 10000 Estimated

一起:

Species_IC = {'R1': '2.7109e+02', 'R2': '1.2709e+02', 'R1_I': '2.7109e+03', 'R2_I': '1.2709e+03', 'LR1R2': '1.6913e+00', 'LR1R2_I': '1.6913e+01'}
Kinetic_parameter = {'Ka': '1.0000e+00', 'TGFb': '1.0000e-01', 'Synth': '1.0000e+00', 'PR1': '8.0000e+00', 'Sink': '0.0000e+00', 'PR2': '4.0000e+00', 'alpha': '1.0000e+00'}

list_Species_IC = Species_IC.keys()
list_Kinetic_parameter = Kinetic_parameter.keys()
list_IC = list_Species_IC + list_Kinetic_parameter
print list_IC
#['R1', 'R2', 'R1_I', 'R2_I', 'LR1R2', 'LR1R2_I', 'Ka', 'TGFb', 'Synth', 'PR1', 'Sink', 'PR2', 'alpha']
out = df[df['Unnamed: 0'].isin(list_IC)].reset_index()
print out
# index Unnamed: 0 Initial_guess Lower_bound Upper_bound \
#0 0 Ka 5 0.000001 10000
#1 4 R1_I 5 0.000001 10000
#2 5 PR1 5 0.000001 10000
#3 6 PR2 5 0.000001 10000
#4 7 alpha 5 0.000001 10000
#5 10 LR1R2_I 5 1.000000 10000
#
# Estimated_or_Fixed
#0 Estimated
#1 Estimated
#2 Estimated
#3 Estimated
#4 Estimated
#5 Estimated

关于python - 根据字典中的值过滤 Pythons Pandas DataFrame,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33649930/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com