gpt4 book ai didi

python - 使用 keras 库指定 Dense

转载 作者:行者123 更新时间:2023-11-28 22:36:00 31 4
gpt4 key购买 nike

我有点误解如何为我的数据创建一个简单的序列。

数据具有以下维度:

X_train.shape
(2369, 12)

y_train.shape
(2369,)

X_test.shape
(592, 12)

y_test.shape
(592,)

这就是我创建模型的方式:

batch_size = 128
nb_epoch = 20
in_out_neurons = X_train.shape[1]
dimof_middle = 100

model = Sequential()
model.add(Dense(batch_size, batch_input_shape=(None, in_out_neurons)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(batch_size))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(in_out_neurons))
model.add(Activation('linear'))

# I am solving the regression problem, not the classification one
model.compile(loss="mean_squared_error", optimizer="rmsprop")

history = model.fit(X_train, y_train,
batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, validation_data=(X_test, y_test))

错误信息:

Exception: Error when checking model input: expected dense_input_14 to have shape (None, 1) but got array with shape (2369, 12)ç

错误是:

Error when checking model target: expected activation_42 to have shape (None, 12) but got array with shape (2369, 1)

此错误发生在行:

model.add(Dense(in_out_neurons))

如何更改 Dense 使其工作?

另一个问题是如何添加一个简单的自动编码器来初始化 ANN 的权重?

最佳答案

您的一个问题是您似乎误解了批处理是什么。批处理是一次计算的训练样本数,因此您不是一次从 X_train 计算一个训练样本,例如,一次计算 100 个。这里重要的一点是,这与您的模型无关。

所以当你写的时候

model.add(Dense(batch_size, batch_input_shape=(None, in_out_neurons)))

然后您创建一个输出大小为一批的全连接层。这没有多大意义。

另一个问题是您的模型的输出是 12 个神经元,而您的 Y 只是一个值/神经元。您的模型如下所示:

  |
v
[128]
[128]
[ 12]
|
v

然后 fit() 所做的是,它输入形状为 (128, 12) 的矩阵((batch size, X_train.shape[1] )) 到模型中,并尝试将来自最后一层的形状 (128,12) 的输出与批处理的相应 Y 值进行比较(形状(128,1)).

关于python - 使用 keras 库指定 Dense,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37793144/

31 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com