gpt4 book ai didi

python - Pandas 用正则表达式读取 csv

转载 作者:行者123 更新时间:2023-11-28 22:31:41 29 4
gpt4 key购买 nike

我有一个文件夹 trip_data 包含许多带日期的 csv 文件,如下所示:

trip_data/
├── df_trip_20140803_1.csv
├── df_trip_20140803_2.csv
├── df_trip_20140803_3.csv
├── df_trip_20140803_4.csv
├── df_trip_20140803_5.csv
├── df_trip_20140803_6.csv
├── df_trip_20140804_1.csv
├── df_trip_20140804_2.csv
├── df_trip_20140804_3.csv
├── df_trip_20140804_4.csv
├── df_trip_20140804_5.csv
├── df_trip_20140804_6.csv
├── df_trip_20140805_1.csv
├── df_trip_20140805_2.csv
├── df_trip_20140805_3.csv
├── df_trip_20140805_4.csv
├── df_trip_20140805_5.csv
├── df_trip_20140805_6.csv
├── df_trip_20140806_1.csv
├── df_trip_20140806_2.csv
├── df_trip_20140806_3.csv
├── df_trip_20140806_4.csv

现在我想用 python pandas 按日期分别加载所有这些文件,意味着 4 DataFrame df_traip_20140803, df_traip_20140804, df_traip_20140805, df_traip_20140806

我的代码是这样的:

days = [20140803,20140804,20140805,20140806]

for day in days:
## Locate to the path
path ='./trip_data/df_trip_%d*.csv' % day
df = pd.read_csv(path, header=None, nrows=10,
names=['ID','lat','lon','status','timestamp'])

无法得到正确的结果。我该怎么做?

最佳答案

我会将所有这些 CSV 收集到具有以下结构的 DataFrame 字典中:

df['20140803'] - 包含属于所有 df_trip_20140803_*.csv CSV 文件的串联数据的 DF。

解决方案:

import os
import re
import glob
import pandas as pd

fpattern = r'D:\temp\.data\41444939\df_trip_{}_{}.csv'
files = glob.glob(fpattern.format('*','*'))

dates = sorted(set([re.split(r'_(\d{8})_(\d+)\.(\w+)', f)[1] for f in files]))

dfs = {}
for d in dates:
dfs[d] = pd.concat((pd.read_csv(f) for f in glob.glob(fpattern.format(d, '*'))), ignore_index=True)

测试:

In [95]: dfs.keys()
Out[95]: dict_keys(['20140804', '20140805', '20140803', '20140806'])

In [96]: dfs['20140803']
Out[96]:
a b c
0 0 0 7
1 3 7 1
2 9 7 3
3 7 4 7
4 5 2 4
5 0 0 4
6 7 2 2
7 8 4 1
8 0 8 3
9 3 9 0
10 7 3 9
11 1 9 8
12 6 7 2
13 3 8 1
14 3 4 5
15 0 9 2
16 5 8 7
17 8 5 4
18 2 0 2
19 9 6 6
20 6 6 6
21 2 6 9
22 1 0 8
23 3 1 1
24 7 4 2
25 7 4 2
26 8 3 7
27 7 3 2
28 1 7 7
29 3 6 5

设置:

fn = r'D:\temp\.data\41444939\a.txt'
base_dir = r'D:\temp\.data\41444939'
files = open(fn).read().splitlines()
for f in files:
pd.DataFrame(np.random.randint(0, 10, (5, 3)), columns=list('abc')) \
.to_csv(os.path.join(base_dir, f), index=False)

关于python - Pandas 用正则表达式读取 csv,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41444939/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com