- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想在我的数据上应用CNN
和LSTM
,我只选择了一小部分数据;我的训练数据大小是 (400,50)
,我的测试数据是 (200,50)
。只有 CNN 模型,它没有任何错误,我只是在添加 LSTM 模型时有很多错误:
model = Sequential()
model.add(Conv1D(filters=8,
kernel_size=16,
padding='valid',
activation='relu',
strides=1, input_shape=(50,1)))
model.add(MaxPooling1D(pool_size=2,strides=None, padding='valid', input_shape=(50,1))) # strides=None means strides=pool_size
model.add(Conv1D(filters=8,
kernel_size=8,
padding='valid',
activation='relu',
strides=1))
model.add(MaxPooling1D(pool_size=2,strides=None, padding='valid',input_shape=(50,1)))
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2)) # 100 num of LSTM units
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2))
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2))
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2))
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2))
model.add(TimeDistributed(Dense(256, activation='softmax')))
# # # 4. Compile model
print('########################### Compilation of the model ######################################')
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
print(model.summary())
print('###########################Fitting the model ######################################')
# # # # # 5. Fit model on training data
x_train = x_train.reshape((400,50,1))
print(x_train.shape) # (400,50,1)
x_test = x_test.reshape((200,50,1))
print(x_test.shape) # (200,50,1)
model.fit(x_train, y_train, batch_size=100, epochs=100,verbose=0)
print(model.summary())
# # # # # 6. Evaluate model on test data
score = model.evaluate(x_test, y_test, verbose=0)
print (score)
这是错误:
Traceback (most recent call last):
File "CNN_LSTM_Based_Attack.py", line 156, in <module>
model.fit(x_train, y_train, batch_size=100, epochs=100,verbose=0)
File "/home/doc/.local/lib/python2.7/site-packages/keras/models.py", line 853, in fit
initial_epoch=initial_epoch)
File "/home/doc/.local/lib/python2.7/site-packages/keras/engine/training.py", line 1424, in fit
batch_size=batch_size)
File "/home/doc/.local/lib/python2.7/site-packages/keras/engine/training.py", line 1304, in _standardize_user_data
exception_prefix='target')
File "/home/doc/.local/lib/python2.7/site-packages/keras/engine/training.py", line 127, in _standardize_input_data
str(array.shape))
ValueError: Error when checking target: expected time_distributed_1 to have 3 dimensions, but got array with shape (400, 256)
您可以在这里找到该模型的完整摘要:(我是 LSTM 的新手,这是我第一次使用它)。
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_1 (Conv1D) (None, 35, 8) 136
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 17, 8) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 17, 8) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 10, 8) 520
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 5, 8) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 5, 8) 0
_________________________________________________________________
lstm_1 (LSTM) (None, 5, 32) 5248
_________________________________________________________________
lstm_2 (LSTM) (None, 5, 32) 8320
_________________________________________________________________
lstm_3 (LSTM) (None, 5, 32) 8320
_________________________________________________________________
lstm_4 (LSTM) (None, 5, 32) 8320
_________________________________________________________________
lstm_5 (LSTM) (None, 5, 32) 8320
_________________________________________________________________
time_distributed_1 (TimeDist (None, 5, 256) 8448
=================================================================
Total params: 47,632
Trainable params: 47,632
Non-trainable params: 0
_________________________________________________________________
当我替换这行代码时:
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2)) # 100 num of LSTM units
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2))
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2))
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2))
model.add(LSTM(32, return_sequences=True,
activation='tanh', recurrent_activation='hard_sigmoid',
dropout=0.2,recurrent_dropout=0.2))
model.add(TimeDistributed(Dense(256, activation='softmax')))
只有这一行:
model.add(LSTM(26, activation='tanh'))
比它工作得很好。
如果你能帮助我,我将不胜感激。
最佳答案
因此 LSTM 层期望输入形状(样本、时间步长、特征)。堆叠 LSTM 时,您应该 return_sequences = True。这将给出形状(样本、时间步长、单位)的输出,从而允许堆栈组合在一起——如果您只想提前预测一步(即下一个值),则应在最后一个 LSTM 层上设置 return_sequences = False在序列/时间序列中) - 如果你不这样做,它将预测与输入中相同的时间步数。您当然也可以预测不同的数字(例如,给定 50 个过去的观察结果预测接下来的 10 个,但这在 Keras 中有点棘手)。
在您的情况下,Conv/MaxPool-layers 输出 5 个“时间步长”,并且您在最后一个 LSTM 层上有 return_sequences = True - 因此您的“y”必须具有形状 (Samples, 5, 256) - 否则转 return_sequences = False 在最后一层并且不使用 TimeDistributed,因为您只预测一个时间步长。
关于python - LSTM 和 CNN : ValueError: Error when checking target: expected time_distributed_1 to have 3 dimensions, 但得到形状为 (400, 256) 的数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45590240/
我无法准确理解 LSTM 单元的范围——它如何映射到网络层。来自格雷夫斯 (2014): 在我看来,在单层网络中,layer = lstm 单元。这实际上如何在多层 rnn 中工作? 三层RNN LS
这是代码 model = Sequential() model.add(LSTM(256, input_shape=(None, 1), return_sequences=True)) model.a
为什么我们需要在pytorch中初始化LSTM中的隐藏状态h0。由于 h0 无论如何都会被计算并被覆盖?是不是很像 整合一个一 = 0 一个= 4 即使我们不做a=0,也应该没问题.. 最佳答案 重点
我正在尝试使用 LSTM 在 Deeplearning4j 中进行一些简单的时间序列预测,但我很难让它工作。 我有一个简单的文本文件,其中包含如下所示的数字列表,并希望网络学习预测下一个数字。 有没有
在大量阅读和绘制图表之后,我想我已经提出了一个模型,我可以将其用作更多测试我需要调整哪些参数和功能的基础。但是,我对如何实现以下测试用例感到困惑(所有数字都比最终模型小几个数量级,但我想从小处着手):
我正在尝试实现“Livelinet:用于预测教育视频中的活力的多模式深度循环神经网络”中的结构。 为了简单说明,我将 10 秒音频剪辑分成 10 个 1 秒音频剪辑,并从该 1 秒音频剪辑中获取频谱图
我正在 Tensorflow 中制作 LSTM 神经网络。 输入张量大小为 92。 import tensorflow as tf from tensorflow.contrib import rnn
我正在尝试 keras IMDB 数据的示例,数据形状是这样的: x_train shape: (25000, 80) 我只是把keras例子的原始代码改成了这样的代码: model = Sequen
我需要了解如何使用 torch.nn 的不同组件正确准备批量训练的输入。模块。具体来说,我希望为 seq2seq 模型创建一个编码器-解码器网络。 假设我有一个包含这三层的模块,按顺序: nn.Emb
我很难概念化 Keras 中有状态 LSTM 和无状态 LSTM 之间的区别。我的理解是,在每个批处理结束时,在无状态情况下“网络状态被重置”,而对于有状态情况,网络状态会为每个批处理保留,然后必须在
nn.Embedding() 是学习 LSTM 所必需的吗? 我在 PyTorch 中使用 LSTM 来预测 NER - 此处是类似任务的示例 - https://pytorch.org/tutori
我正在尝试找出适合我想要拟合的模型的正确语法。这是一个时间序列预测问题,我想在将时间序列输入 LSTM 之前使用一些密集层来改进时间序列的表示。 这是我正在使用的虚拟系列: import pandas
我在理解堆叠式 LSTM 网络中各层的输入-输出流时遇到了一些困难。假设我已经创建了一个如下所示的堆叠式 LSTM 网络: # parameters time_steps = 10 features
LSTM 类中的默认非线性激活函数是 tanh。我希望在我的项目中使用 ReLU。浏览文档和其他资源,我无法找到一种简单的方法来做到这一点。我能找到的唯一方法是定义我自己的自定义 LSTMCell,但
在 PyTorch 中,有一个 LSTM 模块,除了输入序列、隐藏状态和单元状态之外,它还接受 num_layers 参数,该参数指定我们的 LSTM 有多少层。 然而,还有另一个模块 LSTMCel
没什么好说的作为介绍:我想在 TensorFlow 中将 LSTM 堆叠在另一个 LSTM 上,但一直被错误阻止,我不太明白,更不用说单独解决了。 代码如下: def RNN(_X, _istate,
有人可以解释一下吗?我知道双向 LSTM 具有前向和反向传递,但是与单向 LSTM 相比,它有什么优势? 它们各自更适合什么? 最佳答案 LSTM 的核心是使用隐藏状态保留已经通过它的输入信息。 单向
我想构建一个带有特殊词嵌入的 LSTM,但我对它的工作原理有一些疑问。 您可能知道,一些 LSTM 对字符进行操作,因此它是字符输入,字符输出。我想做同样的事情,通过对单词的抽象来学习使用嵌套的 LS
我编写了一个LSTM回归模型。它是最后一个LSTM层的BATCH_SIZE=1和RETURN_Sequence=True的模型。我还设置了VERIFICATION_DATA和耐心进行培训。但似乎存在一
给定一个训练有素的 LSTM 模型,我想对单个时间步执行推理,即以下示例中的 seq_length = 1。在每个时间步之后,需要为下一个“批处理”记住内部 LSTM(内存和隐藏)状态。在推理的最开始
我是一名优秀的程序员,十分优秀!