- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想在 keras 中以 fit_generator 作为输入对模型的参数进行网格搜索
我在堆栈溢出中找到下面的代码并更改它
1- 但我不明白如何给 fit_generator 或 flow_from_directory 以适应功能(代码中的最后一行)
2-如何添加早停?
谢谢
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.wrappers.scikit_learn import KerasClassifier
from keras import backend as K
from sklearn.grid_search import GridSearchCV
from tqdm import tqdm # a nice pretty percentage bar for tasks. Thanks to viewer Daniel Bühler for this suggestion
import os # dealing with directories
import numpy as np # dealing with arrays
from random import shuffle # mixing up or currently ordered data that might lead our network astray in training.
num_classes = 10
# input image dimensions
img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)
def make_model(dense_layer_sizes, filters, kernel_size, pool_size):
'''Creates model comprised of 2 convolutional layers followed by dense layers
dense_layer_sizes: List of layer sizes.
This list has one number for each layer
filters: Number of convolutional filters in each convolutional layer
kernel_size: Convolutional kernel size
pool_size: Size of pooling area for max pooling
'''
model = Sequential()
model.add(Conv2D(filters, kernel_size,
padding='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(filters, kernel_size))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten())
for layer_size in dense_layer_sizes:
model.add(Dense(layer_size))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
return model
class KerasClassifier(KerasClassifier):
""" adds sparse matrix handling using batch generator
"""
def fit(self, x, y, **kwargs):
""" adds sparse matrix handling """
if not issparse(x):
return super().fit(x, y, **kwargs)
############ adapted from KerasClassifier.fit ######################
if self.build_fn is None:
self.model = self.__call__(**self.filter_sk_params(self.__call__))
elif not isinstance(self.build_fn, types.FunctionType):
self.model = self.build_fn(
**self.filter_sk_params(self.build_fn.__call__))
else:
self.model = self.build_fn(**self.filter_sk_params(self.build_fn))
loss_name = self.model.loss
if hasattr(loss_name, '__name__'):
loss_name = loss_name.__name__
if loss_name == 'categorical_crossentropy' and len(y.shape) != 2:
y = to_categorical(y)
### fit => fit_generator
fit_args = copy.deepcopy(self.filter_sk_params(Sequential.fit_generator))
fit_args.update(kwargs)
############################################################
self.model.fit_generator(
self.get_batch(x, y, self.sk_params["batch_size"]),
samples_per_epoch=x.shape[0],
**fit_args)
return self
def get_batch(self, x, y=None, batch_size=32):
""" batch generator to enable sparse input """
index = np.arange(x.shape[0])
start = 0
while True:
if start == 0 and y is not None:
np.random.shuffle(index)
batch = index[start:start+batch_size]
if y is not None:
yield x[batch].toarray(), y[batch]
else:
yield x[batch].toarray()
start += batch_size
if start >= x.shape[0]:
start = 0
def predict_proba(self, x):
""" adds sparse matrix handling """
if not issparse(x):
return super().predict_proba(x)
preds = self.model.predict_generator(
self.get_batch(x, None, self.sk_params["batch_size"]),
val_samples=x.shape[0])
return preds
dense_size_candidates = [[32], [64], [32, 32], [64, 64]]
my_classifier = KerasClassifier(make_model, batch_size=32)
validator = GridSearchCV(my_classifier,
param_grid={'dense_layer_sizes': dense_size_candidates,
# epochs is avail for tuning even when not
# an argument to model building function
'epochs': [3, 6],
'filters': [8],
'kernel_size': [3],
'pool_size': [2]},
scoring='neg_log_loss',
n_jobs=1)
batch_size = 20
validation_datagen = ImageDataGenerator(rescale=1./255)
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'd:/train', # this is the target directory
target_size=(width, height), # all images will be resized to 150x150
batch_size=batch_size,
color_mode= "grayscale",
class_mode='binary',
shuffle=True
# ,save_to_dir='preview', save_prefix='cat', save_format='png'
) # since we use binary_crossentropy loss, we need binary labels
# this is a similar generator, for validation data
validation_generator = validation_datagen.flow_from_directory(
'd:/validation',
target_size=(width, height),
batch_size=batch_size,
color_mode= "grayscale",
class_mode='binary')
test_generator = test_datagen.flow_from_directory(
'd:/test',
target_size=(width, height),
batch_size=batch_size,
color_mode= "grayscale",
class_mode='binary')
validator.fit(??????
最佳答案
我正在使用这个实现,希望它能对你有所帮助。
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger
from keras.wrappers.scikit_learn import KerasClassifier
import types
class KerasBatchClassifier(KerasClassifier):
def fit(self, X, y, **kwargs):
# taken from keras.wrappers.scikit_learn.KerasClassifier.fit ###################################################
if self.build_fn is None:
self.model = self.__call__(**self.filter_sk_params(self.__call__))
elif not isinstance(self.build_fn, types.FunctionType) and not isinstance(self.build_fn, types.MethodType):
self.model = self.build_fn(**self.filter_sk_params(self.build_fn.__call__))
else:
self.model = self.build_fn(**self.filter_sk_params(self.build_fn))
loss_name = self.model.loss
if hasattr(loss_name, '__name__'):
loss_name = loss_name.__name__
if loss_name == 'categorical_crossentropy' and len(y.shape) != 2:
y = to_categorical(y)
################################################################################################################
datagen = ImageDataGenerator(
rotation_range=45,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest'
)
if 'X_val' in kwargs and 'y_val' in kwargs:
X_val = kwargs['X_val']
y_val = kwargs['y_val']
val_gen = ImageDataGenerator(
horizontal_flip=True
)
val_flow = val_gen.flow(X_val, y_val, batch_size=32)
val_steps = len(X_val) / 32
early_stopping = EarlyStopping( patience=5, verbose=5, mode="auto")
model_checkpoint = ModelCheckpoint("results/best_weights.{epoch:02d}-{loss:.5f}.hdf5", verbose=5, save_best_only=True, mode="auto")
else:
val_flow = None
val_steps = None
early_stopping = EarlyStopping(monitor="acc", patience=3, verbose=5, mode="auto")
model_checkpoint = ModelCheckpoint("results/best_weights.{epoch:02d}-{loss:.5f}.hdf5", monitor="acc", verbose=5, save_best_only=True, mode="auto")
callbacks = [early_stopping, model_checkpoint]
epochs = self.sk_params['epochs'] if 'epochs' in self.sk_params else 100
self.__history = self.model.fit_generator(
datagen.flow(X, y, batch_size=32),
steps_per_epoch=len(X) / 32,
validation_data=val_flow,
validation_steps=val_steps,
epochs=epochs,
callbacks=callbacks
)
return self.__history
def score(self, X, y, **kwargs):
kwargs = self.filter_sk_params(Sequential.evaluate, kwargs)
loss_name = self.model.loss
if hasattr(loss_name, '__name__'):
loss_name = loss_name.__name__
if loss_name == 'categorical_crossentropy' and len(y.shape) != 2:
y = to_categorical(y)
outputs = self.model.evaluate(X, y, **kwargs)
if type(outputs) is not list:
outputs = [outputs]
for name, output in zip(self.model.metrics_names, outputs):
if name == 'acc':
return output
raise Exception('The model is not configured to compute accuracy. '
'You should pass `metrics=["accuracy"]` to '
'the `model.compile()` method.')
@property
def history(self):
return self.__history
如您所见,它特定于图像,但您可以根据自己的特定需求对其进行调整。
我是这样使用它的:
from sklearn.model_selection import GridSearchCV
model = KerasBatchClassifier(build_fn=create_model, epochs=epochs)
learn_rate = [0.001, 0.01, 0.1]
epsilon = [None, 1e-2, 1e-3]
dropout_rate = [0.25, 0.5]
param_grid = dict(learn_rate=learn_rate, epsilon=epsilon, dropout_rate=dropout_rate)
grid = GridSearchCV(estimator=model, param_grid=param_grid)
grid_result = grid.fit(X_train, Y_train, X_val = X_test, y_val = Y_test)
关于python - 如何在 keras 中使用适合生成器的网格搜索,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47279677/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!