gpt4 book ai didi

python - 如何在 python 中计算(统计)幂函数与样本大小?

转载 作者:行者123 更新时间:2023-11-28 22:23:02 28 4
gpt4 key购买 nike

这在 python 中如何完成?

  1. 计算给定功效和 alpha 的样本量?
  2. 计算给定样本量和 alpha 的功效?

注意:我对 python 为(统计)幂函数计算提供的函数感到非常困惑:(。

有人可以帮我在这里下订单吗?

statsmodels下有两个函数:

from statsmodels.stats.power import ttest_power, tt_ind_solve_power()

我们有:

tt_ind_solve_power(effect_size=effect_size, alpha=alpha, power=0.8, ratio=1, alternative='two-sided')

我们还有:

ttest_power(0.2, nobs=sampleSize, alpha=alpha, alternative='two-sided')

还有这段代码:

import statsmodels.stats.api as sms
es = sms.proportion_effectsize(prop1, prop2, method='normal')
n = sms.NormalIndPower().solve_power(es, power=0.9, alpha=0.05, ratio=2)

我在某处找到了这个例子,但它没有解释什么是 prop1 和 prop2!

每一个都给了我不同的值(value)观。

谢谢

最佳答案

作为对上述问题的回答,我编写了这个计算功效与样本量的函数。

当调用 tt_ind_solve_power 时,您需要将一个参数保留为 None 以便进行计算。在下面的示例中,我将电源保持为 None

我希望有人会发现它有用,欢迎任何改进。

from statsmodels.stats.power import  tt_ind_solve_power
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt

def test_ttest_power_diff(mean, std, sample1_size=None, alpha=0.05, desired_power=0.8, mean_diff_percentages=[0.1, 0.05]):
'''
calculates the power function for a given mean and std. the function plots a graph showing the comparison between desired mean differences
:param mean: the desired mean
:param std: the std value
:param sample1_size: if None, it is assumed that both samples (first and second) will have same size. The function then will
walk through possible sample sizes (up to 100, hardcoded).
If this value is not None, the function will check different alternatives for sample 2 sizes up to sample 1 size.
:param alpha: alpha default value is 0.05
:param desired_power: will use this value in order to mark on the graph
:param mean_diff_percentages: iterable list of percentages. A line per value will be calculated and plotted.
:return: None
'''
fig, ax = plt.subplots()
for mean_diff_percent in mean_diff_percentages:
mean_diff = mean_diff_percent * mean
effect_size = mean_diff / std

print('Mean diff: ', mean_diff)
print('Effect size: ', effect_size)

powers = []

max_size = sample1_size
if sample1_size is None:
max_size = 100

sizes = np.arange(1, max_size, 2)
for sample2_size in sizes:
if(sample1_size is None):
n = tt_ind_solve_power(effect_size=effect_size, nobs1=sample2_size, alpha=alpha, ratio=1.0, alternative='two-sided')
print('tt_ind_solve_power(alpha=', alpha, 'sample2_size=', sample2_size, '): sample size in *second* group: {:.5f}'.format(n))
else:
n = tt_ind_solve_power(effect_size=effect_size, nobs1=sample1_size, alpha=alpha, ratio=(1.0*sample2_size/sample1_size), alternative='two-sided')
print('tt_ind_solve_power(alpha=', alpha, 'sample2_size=', sample2_size, '): sample size *each* group: {:.5f}'.format(n))

powers.append(n)

try: # mark the desired power on the graph
z1 = interp1d(powers, sizes)
results = z1(desired_power)

plt.plot([results], [desired_power], 'gD')
except Exception as e:
print("Error: ", e)
#ignore

plt.title('Power vs. Sample Size')
plt.xlabel('Sample Size')
plt.ylabel('Power')

plt.plot(sizes, powers, label='diff={:2.0f}%'.format(100*mean_diff_percent)) #, '-gD')

plt.legend()
plt.show()

例如,如果您使用 mean=10 和 std=2 调用此函数,您将得到此图:

Power vs. Sample Size (avg=10, std=2)

关于python - 如何在 python 中计算(统计)幂函数与样本大小?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47299824/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com