- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
并行执行多个tf.Session()
的官方方法是使用tf.train.Server
,如Distributed TensorFlow 中所述。 .另一方面,根据 Keras + Tensorflow and Multiprocessing in Python,以下内容适用于 Keras,并且可能无需使用 tf.train.Server 即可修改为 Tensorflow。 .
def _training_worker(train_params):
import keras
model = obtain_model(train_params)
model.fit(train_params)
send_message_to_main_process(...)
def train_new_model(train_params):
training_process = multiprocessing.Process(target=_training_worker, args = train_params)
training_process.start()
get_message_from_training_process(...)
training_process.join()
第一种方法比第二种方法快吗?我有一个以第二种方式编写的代码,由于我的算法 (AlphaZero) 的性质,一个 GPU 应该运行许多进程,每个进程都执行对小批量的预测。
最佳答案
tf.train.Server
当需要在不同节点之间通信时,专为集群中的分布式计算而设计。当训练分布在多台机器上或在某些情况下分布在一台机器上的多个 GPU 上时,这尤其有用。来自文档:
An in-process TensorFlow server, for use in distributed training.
A
tf.train.Server
instance encapsulates a set of devices and atf.Session
target that can participate in distributed training. A server belongs to a cluster (specified by atf.train.ClusterSpec
), and corresponds to a particular task in a named job. The server can communicate with any other server in the same cluster.
使用 multiprocessing.Process
生成多个进程并不是 Tensorflow 意义上的集群,因为子进程之间没有交互。此方法更易于设置,但仅限于一台机器。既然你说你只有一台机器,这可能不是一个强有力的论据,但如果你打算扩展到一组机器,你将不得不重新设计整个方法。
tf.train.Server
因此是一种更通用和可扩展的解决方案。此外,它允许通过一些重要的通信来组织复杂的训练,例如异步梯度更新。训练速度是否更快在很大程度上取决于任务,我认为在一个共享 GPU 上不会有显着差异。
仅供引用,以下是服务器代码的样子(图复制示例之间):
# specify the cluster's architecture
cluster = tf.train.ClusterSpec({
'ps': ['192.168.1.1:1111'],
'worker': ['192.168.1.2:1111',
'192.168.1.3:1111']
})
# parse command-line to specify machine
job_type = sys.argv[1] # job type: "worker" or "ps"
task_idx = sys.argv[2] # index job in the worker or ps list as defined in the ClusterSpec
# create TensorFlow Server. This is how the machines communicate.
server = tf.train.Server(cluster, job_name=job_type, task_index=task_idx)
# parameter server is updated by remote clients.
# will not proceed beyond this if statement.
if job_type == 'ps':
server.join()
else:
# workers only
with tf.device(tf.train.replica_device_setter(worker_device='/job:worker/task:' + task_idx,
cluster=cluster)):
# build your model here as if you only were using a single machine
pass
with tf.Session(server.target):
# train your model here
pass
关于python - 为什么要使用 tf.train.Server 并行执行多个 tf.Session()?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48543654/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!