- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我无法让 TPot(v. 0.9.2,Python 2.7)处理多类数据(尽管我在 TPot 的文档中找不到任何说它只进行二进制分类的内容)。
下面提供了一个例子。它运行到 9%,然后因错误而死掉:
RuntimeError: There was an error in the TPOT optimization process.
This could be because the data was not formatted properly, or because
data for a regression problem was provided to the TPOTClassifier
object. Please make sure you passed the data to TPOT correctly.
但是将 n_classes 更改为 2,它运行正常。
from sklearn.metrics import f1_score, make_scorer
from sklearn.datasets import make_classification
from tpot import TPOTClassifier
scorer = make_scorer(f1_score)
X, y = make_classification(n_samples=200, n_features=100,
n_informative=20, n_redundant=10,
n_classes=3, random_state=42)
tpot = TPOTClassifier(generations=10, population_size=20, verbosity=20, scoring=scorer)
tpot.fit(X, y)
最佳答案
事实上,TPOT 也应该处理多类数据 - example in the docs与 MNIST 数据集(10 类)。
错误与f1_score
有关;用 n_classes=3
保存你的代码,并要求
tpot = TPOTClassifier(generations=10, population_size=20, verbosity=2)
(即使用默认的 scoring='accuracy'
)工作正常:
Warning: xgboost.XGBClassifier is not available and will not be used by TPOT.
Generation 1 - Current best internal CV score: 0.7447422496202984
Generation 2 - Current best internal CV score: 0.7447422496202984
Generation 3 - Current best internal CV score: 0.7454927186634503
Generation 4 - Current best internal CV score: 0.7454927186634503
Generation 5 - Current best internal CV score: 0.7706334316090413
Generation 6 - Current best internal CV score: 0.7706334316090413
Generation 7 - Current best internal CV score: 0.7706334316090413
Generation 8 - Current best internal CV score: 0.7706334316090413
Generation 9 - Current best internal CV score: 0.7757616367372464
Generation 10 - Current best internal CV score: 0.7808898418654516
Best pipeline:
LogisticRegression(KNeighborsClassifier(DecisionTreeClassifier(input_matrix, criterion=entropy, max_depth=3, min_samples_leaf=15, min_samples_split=12), n_neighbors=6, p=2, weights=uniform), C=0.01, dual=False, penalty=l2)
TPOTClassifier(config_dict={'sklearn.linear_model.LogisticRegression': {'penalty': ['l1', 'l2'], 'C': [0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0, 15.0, 20.0, 25.0], 'dual': [True, False]}, 'sklearn.decomposition.PCA': {'iterated_power': range(1, 11), 'svd_solver': ['randomized']}, 'sklearn.feature_selection.Se...ocessing.PolynomialFeatures': {'degree': [2], 'interaction_only': [False], 'include_bias': [False]}},
crossover_rate=0.1, cv=5, disable_update_check=False,
early_stop=None, generations=10, max_eval_time_mins=5,
max_time_mins=None, memory=None, mutation_rate=0.9, n_jobs=1,
offspring_size=20, periodic_checkpoint_folder=None,
population_size=20, random_state=None, scoring=None, subsample=1.0,
verbosity=2, warm_start=False)
使用 suggested in the docs 查询 F1 分数,即:
tpot = TPOTClassifier(generations=10, population_size=20, verbosity=2, scoring='f1')
再次产生您报告的错误,可能是因为 default argument f1_score
中的是average='binary'
,对于多类问题确实没有意义,而简单的f1
只是对binary问题 ( docs )。
在 scoring
中明确使用 F1 分数的其他变体,例如f1_macro
、f1_micro
或 f1_weighted
工作正常(未显示)。
关于python - TPOT:多类数据分类失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48625353/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!