- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试进行多类分类并使用 crowdflower 文本分类 dataset .下面是我的代码:
from __future__ import unicode_literals, print_function
from __future__ import unicode_literals
from pathlib import Path
import pandas as pd
import spacy
from spacy.util import minibatch, compounding
def main(model=None, output_dir=None, n_iter=20):
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# add the text classifier to the pipeline if it doesn't exist
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'textcat' not in nlp.pipe_names:
textcat = nlp.create_pipe('textcat')
nlp.add_pipe(textcat, last=True)
# otherwise, get it, so we can add labels to it
else:
textcat = nlp.get_pipe('textcat')
# add label to text classifier
for i in ['neutral','worry','happiness','sadness','love','surprise','fun','relief','hate','enthusiasm','boredom','anger']:
textcat.add_label(i)
df = pd.read_csv('text_emotion.csv')
df.drop(['tweet_id', 'author'], axis=1, inplace=True)
df = df[df['sentiment'] != 'empty']
train_data = list(zip(unicode(df['content']),
[{u'cats': unicode(cats)} for cats in df['sentiment']]))
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
with nlp.disable_pipes(*other_pipes): # only train textcat
optimizer = nlp.begin_training()
print("Training the model...")
print('{:^5}\t'.format('LOSS'))
for i in range(n_iter):
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(train_data, size=compounding(4., 32., 1.001))
for batch in batches:
texts, annotations = zip(*batch)
# print('texts: '+str(texts))
# print('annotations: '+str(annotations))
nlp.update(texts, annotations, sgd=optimizer, drop=0.2,losses=losses)
# with textcat.model.use_params(optimizer.averages):
# evaluate on the dev data split off in load_data()
print('{0:.3f}' # print a simple table
.format(losses['textcat']))
# test the trained model
test_text = "This movie sucked"
doc = nlp(test_text)
print(test_text, doc.cats)
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
print(test_text, doc2.cats)
if __name__ == '__main__':
main()
我收到以下错误:
Traceback (most recent call last):
batch: [(u'1', {u'cats': u'sadness'}), (u' ', {u'cats': u'sadness'}), (u' ', {u'cats': u'enthusiasm'}), (u' ', {u'cats': u'neutral'})]
File "/Users/loginofdeath/Documents/24Feb/emo_cat.py", line 91, in <module>
main()
File "/Users/loginofdeath/Document/24Feb/emo_cat.py", line 63, in main
nlp.update(texts, annotations, sgd=optimizer, drop=0.2,losses=losses)
File "/usr/local/lib/python2.7/site-packages/spacy/language.py", line 399, in update
gold = GoldParse(doc, **gold)
File "gold.pyx", line 430, in spacy.gold.GoldParse.__init__
ValueError: dictionary update sequence element #0 has length 1; 2 is required
我正在使用:Python版本:2.7.14
平台:Darwin-16.4.0-x86_64-i386-64bit
spaCy 版本:2.0.9
型号:zh
有人可以帮助我吗?我在 spacy 中进行多类分类的方法是否正确?提前致谢。
最佳答案
此答案的全部功劳归功于 Vikas Singh .这是下面的代码:
from __future__ import unicode_literals, print_function
from __future__ import unicode_literals
from pathlib import Path
import pandas as pd
import spacy
import copy
from spacy.util import minibatch, compounding
import re
def clean_string(mystring):
return re.sub('[^A-Za-z\ 0-9 ]+', '', mystring)
def main(model=None, output_dir=None, n_iter=2):
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# add the text classifier to the pipeline if it doesn't exist
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'textcat' not in nlp.pipe_names:
textcat = nlp.create_pipe('textcat')
nlp.add_pipe(textcat, last=True)
# otherwise, get it, so we can add labels to it
else:
textcat = nlp.get_pipe('textcat')
# add label to text classifier
for i in ['neutral','worry','happiness','sadness','love','surprise','fun','relief','hate','enthusiasm','boredom','anger']:
textcat.add_label(i)
df = pd.read_csv('text_emotion.csv')
df.drop(['tweet_id', 'author'], axis=1, inplace=True)
df = df[df['sentiment'] != 'empty']
sentiment_values = df['sentiment'].unique()
labels_default = dict((v, 0) for v in sentiment_values)
train_data = []
for i, row in df.iterrows():
label_values = copy.deepcopy(labels_default)
label_values[row['sentiment']] = 1
train_data.append((unicode(clean_string(row['content'])), {"cats": label_values}))
train_data = train_data[:5000]
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
with nlp.disable_pipes(*other_pipes): # only train textcat
optimizer = nlp.begin_training()
print("Training the model...")
print('{:^5}\t'.format('LOSS'))
for i in range(n_iter):
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(train_data, size=compounding(4., 32., 1.001))
for batch in batches:
texts, annotations = zip(*batch)
# print('texts: '+str(texts))
# print('annotations: '+str(annotations))
nlp.update(texts, annotations, sgd=optimizer, drop=0.2,losses=losses)
# with textcat.model.use_params(optimizer.averages):
# evaluate on the dev data split off in load_data()
print('{0:.3f}' # print a simple table
.format(losses['textcat']))
# test the trained model
test_text = "This movie sucked"
doc = nlp(test_text)
print(test_text, sorted(doc.cats.items(), key=lambda val: val[1], reverse=True))
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
print(test_text, doc2.cats)
if __name__ == '__main__':
main()
请注意在代码中我们只训练了训练数据的 5000 个数据点。我希望这能解决大多数关于 spaCy 中多类分类的问题。
关于python - 在 spacy 中进行多类分类时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48973447/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!