- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个像这样的数据框:
testdf
category item inventory sold
0 A Low 100 50
1 A High 200 75
2 A Med 130 20
3 A Misc 435 150
4 A High 130 65
5 A Misc 120 88
6 B Misc 321 230
7 B High 453 450
8 B Low 321 301
9 B Low 122 80
我根据类别和项目对其进行分组
dfindx = testdf.groupby(['category','item']).agg({'inventory':['count','sum']})
dfindx
inventory
count sum
category item
A High 2 330
Low 1 100
Med 1 130
Misc 2 555
B High 1 453
Low 2 443
Misc 1 321
现在在聚合索引表时我遇到了这个错误:
dfindx.groupby(['category'])[['count']].sum()
KeyError: "Columns not found: 'count'"
dfindx.columns
MultiIndex(levels=[['inventory'], ['count', 'sum']],
labels=[[0, 0], [0, 1]])
我无法正确引用计数和求和来汇总分组表。
dfindx.groupby(['category'])[inventory['count']].sum()
NameError: name 'inventory' is not defined
dfindx.groupby(['category'])[['inventory']['count']].sum()
TypeError: list indices must be integers or slices, not str
最佳答案
我认为您可以通过 list
与 inventory
列的聚合来简化第一次聚合:
dfindx = testdf.groupby(['category','item'])['inventory'].agg(['count','sum'])
print (dfindx)
count sum
category item
A High 2 330
Low 1 100
Med 1 130
Misc 2 555
B High 1 453
Low 2 443
Misc 1 321
然后下一个聚合工作正常:
print(dfindx.groupby(['category'])[['count']].sum())
count
category
A 6
B 4
但是如果想将您的代码与 MultiIndex
输出一起使用,请在下一个聚合中使用元组进行选择:
dfindx = testdf.groupby(['category','item']).agg({'inventory':['count','sum']})
print (dfindx)
inventory
count sum
category item
A High 2 330
Low 1 100
Med 1 130
Misc 2 555
B High 1 453
Low 2 443
Misc 1 321
print(dfindx.groupby(['category'])[[('inventory','count')]].sum())
inventory
count
category
A 6
B 4
关于python - 引用 groupby 结果的聚合列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49548364/
给定输入: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 将数字按奇数或偶数分组,然后按小于或大于 5 分组。 预期输出: [[1, 3, 5], [2, 4], [6, 8, 10
编辑: @coldspeed、@wen-ben、@ALollz 指出了我在字符串 np.nan 中犯的新手错误。答案很好,所以我不删除这个问题来保留那些答案。 原文: 我读过这个问题/答案 What'
我试图概括我提出的问题 here . mlb 数据框看起来像 Player Position Salary Year 0 Mike Wit
我认为我不需要共享整个数据框,但基本上,这是有问题的代码行(当然,已经导入了 pandas) divstack = df[df['Competitor']=='Emma Slabach'].group
我面临下一个问题:我有组(按 ID),对于所有这些组,我需要应用以下代码:如果组内位置之间的距离在 3 米以内,则需要将它们添加在一起,因此将创建一个新组(代码如何创建我在下面显示的组)。现在,我想要
我有以下数据: ,dateTime,magnitude,occurrence,dateTime_s 1,2017-11-20 08:00:09.052260,12861,1,2017-11-20 08
我按感兴趣的列对 df 进行分组: grouped = df.groupby('columnA') 现在我只想保留至少有 5 名成员的组: grouped.filter(lambda x: len(x
数据是一个时间序列,许多成员 ID 与许多类别相关联: data_df = pd.DataFrame({'Date': ['2018-09-14 00:00:22',
选择 u.UM_TOKEN_NO 、u.UM_FULLNAME、u.SECTOR、u.department_name、t.TS_PROJECT_CODE、sum(t.TS_TOTAL_HRS) 来自
我有这两个表: +---------------+-------------+---------------------+----------+---------+ | items_ordered |
我正在使用 groupby 和 sum 快速汇总两个数据集 一个包含: sequence shares 1 100 2 200 3 50 1 2
这个问题在这里已经有了答案: list around groupby results in empty groups (3 个答案) itertools groupby object not out
我有一组行,我想按标识符的值进行分组 - 存在于每一行中 - 然后对将作为结果的组进行进一步的隔离处理。 我的数据框是这样的: In [50]: df Out[50]: groupkey b
假设您要在全局范围内销售产品,并且希望在某个主要城市的某个地方设立销售办事处。您的决定将完全基于销售数字。 这将是您的(简化的)销售数据: df={ 'Product':'Chair', 'Count
我有一个将数据分组两次的查询: var query = (from a in Context.SetA() from b in Context.SetB().Where(x => x.aId == a
我有一个这种格式的数据框: value identifier 2007-01-01 0.087085 55 2007-01-01 0.703249
这个问题在这里已经有了答案: python groupby behaviour? (3 个答案) 关闭 4 年前。 我有一个这样的列表 [u'201003', u'200403', u'200803
在 Python 中,我可以使用 itertools.groupby 将具有相同键的连续元素分组。 : >>> items = [(1, 2), (1, 5), (1, 3), (2, 9), (3,
无法翻译以下 GroupBy 查询并将引发错误:不支持客户端 GroupBy IEnumerable ids = new List { 1, 2, 3 }; var q = db.Comments.W
考虑一个 Spark DataFrame,其中只有很少的列。目标是对其执行 groupBy 操作,而不将其转换为 Pandas DataFrame。等效的 Pandas groupBy 代码如下所示:
我是一名优秀的程序员,十分优秀!