gpt4 book ai didi

python - Chaco:从 Chaco 图中获取索引和值

转载 作者:行者123 更新时间:2023-11-28 22:01:58 25 4
gpt4 key购买 nike

我正在开发一个程序,其中有两个相邻的地 block 。第一个图有一个 ZoomTool、一个 PanTool 和一个 RangeSelection 工具。第二个图应根据左侧图中所做的更改(缩放等)进行修改。

缩放后是否有可能得到新的索引和值?以及如何在进行范围选择后获得新的索引范围?该索引也应该是右图的新索引,直到所选部分不再被选中。

我将在本文下方发布我的代码,但您也可以看到它 here

这是我的代码:

#=================================================
# Code
#=================================================

# Enthought library imports
from traits.api import HasTraits, Int, Instance
from traits.api import *
from traitsui.api import Item, View, Group, HGroup, VGroup
from enable.api import Component
from enable.component_editor import ComponentEditor
from traitsui.menu import OKButton, CancelButton
# Chaco imports
from chaco.tools.api import RangeSelection, RangeSelectionOverlay
from chaco.chaco_plot_editor import ChacoPlotEditor, ChacoPlotItem
from chaco.api import Plot, ArrayPlotData, OverlayPlotContainer, create_line_plot, create_scatter_plot, add_default_axes, add_default_grids, PlotAxis, PlotLabel
from chaco.tools.api import PanTool, BroadcasterTool, ZoomTool
# Numpy imports
from numpy import linspace, pi, sin, tan

def main():
# normally this function gets its values out of other files
x1 = -2*pi
x2 = pi
y1 = 0
y2 = 2
uebergabe = {"xlim":[x1,x2], "ylim":[y1,y2], "ranges":[x1,x2]}
return uebergabe


class Trait(HasTraits):
plot = Instance(Component)

#creates the container
container = OverlayPlotContainer(padding = 50, fill_padding = True,
bgcolor = "lightgray", use_backbuffer=True)
container2 = OverlayPlotContainer(padding = 50, fill_padding = True,
bgcolor = "lightgray", use_backbuffer=True)

# Traits
xmin = Float
xmax = Float
ymin = Float
ymax = Float
rangeXMin = Float
rangeXMax = Float

# TraitsUI view
traits_view = View(Group(
HGroup(
VGroup(Item("container", editor = ComponentEditor(), show_label = False)),
VGroup(Item("container2", editor = ComponentEditor(), show_label = False))),
HGroup(Item("xmin"), Item("xmax"), Item("ymin"), Item("ymax"), show_border = True, label = "Plotborders"),
HGroup(Item("rangeXMin", label="x_min"), Item("rangeXMax", label="x_max"), show_border = True, label="Range of right plot")),
buttons = [OKButton, CancelButton], resizable = True, width = 1000, height = 800)

# Constructor
def __init__(self):
super(Trait, self).__init__()

uebergabe = main()

# initialize traits
self.xmin = uebergabe["xlim"][0]
self.xmax = uebergabe["xlim"][1]
self.ymin = uebergabe["ylim"][0]
self.ymax = uebergabe["ylim"][1]
self.rangeXMin = uebergabe["ranges"][0]
self.rangeXMin = uebergabe["ranges"][1]


self._create_Container()


def _create_Container(self):

#creating dict of plots and the broadcaster
plots = {}
broadcaster = BroadcasterTool()

#=====================first container===========================

#first plot
index = linspace(-2*pi,2*pi,1000)
plot = create_line_plot((index, sin(index)+0.5), color = "blue", index_bounds=(self.xmin, self.xmax), value_bounds = (self.ymin, self.ymax))
plot.bgcolor = "white"
plot.border_visible = True
value_mapper = plot.value_mapper
index_mapper = plot.index_mapper
add_default_grids(plot)
add_default_axes(plot)

# range selection
self.rangeselect = RangeSelection(plot, left_button_selects = False, auto_handle_event = False)
plot.active_tool = self.rangeselect
plot.overlays.append(RangeSelectionOverlay(component=plot))

#adds plot to the container
self.container.add(plot)

# second plot
index2 = linspace(-5*pi,4*pi,1000)
plot = create_line_plot((index2, tan(index2)), color = "black", index_bounds=(self.xmin, self.xmax), value_bounds = (self.ymin, self.ymax))
plot.value_mapper = value_mapper
value_mapper.range.add(plot.value)
plot.index_mapper = index_mapper
index_mapper.range.add(plot.index)

# Create a pan tool and give it a reference to the plot
pan = PanTool(plot, drag_button="left")
broadcaster.tools.append(pan)

# allows to zoom
zoom = ZoomTool(plot, tool_mode="box", always_on = False, visible = True)
plot.overlays.append(zoom)


#adds plot to the container
self.container.add(plot)

# appends broadcaster to the container
self.container.tools.append(broadcaster)

# title of the container
self.container.overlays.append(PlotLabel("left plot", component=self.container, overlay_position = "top"))

#==============end of first container===========================

#====================second container===========================

#first plot2
index3 = linspace(-10*pi,10*pi,500)
plot2 = create_scatter_plot((index3, sin(index3)), color = "blue", index_bounds=(self.rangeXMin, self.rangeXMax), value_bounds = (self.ymin, self.ymax))
plot2.bgcolor = "white"
plot2.border_visible = True
plot2.value_mapper = value_mapper # the plot uses the same index and
plot2.index_mapper = index_mapper # value like the plots of container1
#value_mapper.range.add(plot2.value)
#index_mapper.range.add(plot2.index)
add_default_grids(plot2)
add_default_axes(plot2)

#adds plot to the container
self.container2.add(plot2)

# title of the container
self.container2.overlays.append(PlotLabel("right plot", component=self.container, overlay_position = "top"))

#=============end of second container===========================
gui = Trait()
gui.configure_traits()

最佳答案

您可以使用 sync_trait() 来同步两个特征之间的值:

self.sync_trait("xmin", index_mapper.range, "_low_value")
self.sync_trait("xmax", index_mapper.range, "_high_value")
self.sync_trait("ymin", value_mapper.range, "_low_value")
self.sync_trait("ymax", value_mapper.range, "_high_value")

self.sync_trait("rangeXMin", plot2.index_mapper.range, "low", False)
self.sync_trait("rangeXMax", plot2.index_mapper.range, "high", False)

捕捉范围选择变化:

self.rangeselect.on_trait_change(self.on_selection_changed, "selection")

def on_selection_changed(self, selection):
if selection != None:
self.rangeXMin, self.rangeXMax = selection

捕捉轴范围变化:

index_mapper.on_trait_change(self.on_mapper_updated, "updated")

def on_mapper_updated(self, mapper, name, value):
if not self.rangeselect.selection:
self.rangeXMin = mapper.range.low
self.rangeXMax = mapper.range.high

完整代码如下:

# -*- coding: utf-8 -*-
#=================================================
# Code
#=================================================

# Enthought library imports
from traits.api import HasTraits, Int, Instance
from traits.api import *
from traitsui.api import Item, View, Group, HGroup, VGroup
from enable.api import Component
from enable.component_editor import ComponentEditor
from traitsui.menu import OKButton, CancelButton
# Chaco imports
from chaco.tools.api import RangeSelection, RangeSelectionOverlay
from chaco.chaco_plot_editor import ChacoPlotEditor, ChacoPlotItem
from chaco.api import Plot, ArrayPlotData, OverlayPlotContainer, create_line_plot, create_scatter_plot, add_default_axes, add_default_grids, PlotAxis, PlotLabel
from chaco.tools.api import PanTool, BroadcasterTool, ZoomTool
# Numpy imports
from numpy import linspace, pi, sin, tan

def main():
# normally this function gets its values out of other files
x1 = -2*pi
x2 = pi
y1 = 0
y2 = 2
uebergabe = {"xlim":[x1,x2], "ylim":[y1,y2], "ranges":[x1,x2]}
return uebergabe


class Trait(HasTraits):
plot = Instance(Component)

#creates the container
container = OverlayPlotContainer(padding = 50, fill_padding = True,
bgcolor = "lightgray", use_backbuffer=True)
container2 = OverlayPlotContainer(padding = 50, fill_padding = True,
bgcolor = "lightgray", use_backbuffer=True)

# Traits
xmin = Float
xmax = Float
ymin = Float
ymax = Float
rangeXMin = Float
rangeXMax = Float

# TraitsUI view
traits_view = View(Group(
HGroup(
VGroup(Item("container", editor = ComponentEditor(), show_label = False)),
VGroup(Item("container2", editor = ComponentEditor(), show_label = False))),
HGroup(Item("xmin"), Item("xmax"), Item("ymin"), Item("ymax"), show_border = True, label = "Plotborders"),
HGroup(Item("rangeXMin", label="x_min"), Item("rangeXMax", label="x_max"), show_border = True, label="Range of right plot")),
buttons = [OKButton, CancelButton], resizable = True, width = 1000, height = 500)

# Constructor
def __init__(self):
super(Trait, self).__init__()

uebergabe = main()

# initialize traits
self.xmin = uebergabe["xlim"][0]
self.xmax = uebergabe["xlim"][1]
self.ymin = uebergabe["ylim"][0]
self.ymax = uebergabe["ylim"][1]
self.rangeXMin = uebergabe["ranges"][0]
self.rangeXMin = uebergabe["ranges"][1]


self._create_Container()


def _create_Container(self):

#creating dict of plots and the broadcaster
plots = {}
broadcaster = BroadcasterTool()

#=====================first container===========================

#first plot
index = linspace(-2*pi,2*pi,1000)
plot = create_line_plot((index, sin(index)+0.5), color = "blue", index_bounds=(self.xmin, self.xmax), value_bounds = (self.ymin, self.ymax))
plot.bgcolor = "white"
plot.border_visible = True
value_mapper = plot.value_mapper
index_mapper = plot.index_mapper
add_default_grids(plot)
add_default_axes(plot)

self.sync_trait("xmin", index_mapper.range, "_low_value")
self.sync_trait("xmax", index_mapper.range, "_high_value")
self.sync_trait("ymin", value_mapper.range, "_low_value")
self.sync_trait("ymax", value_mapper.range, "_high_value")

# range selection
self.rangeselect = RangeSelection(plot, left_button_selects = False, auto_handle_event = False)
plot.active_tool = self.rangeselect
plot.overlays.append(RangeSelectionOverlay(component=plot))
self.rangeselect.on_trait_change(self.on_selection_changed, "selection")

#adds plot to the container
self.container.add(plot)

# second plot
index2 = linspace(-5*pi,4*pi,1000)
plot = create_line_plot((index2, tan(index2)), color = "black", index_bounds=(self.xmin, self.xmax), value_bounds = (self.ymin, self.ymax))
plot.value_mapper = value_mapper
value_mapper.range.add(plot.value)
plot.index_mapper = index_mapper
index_mapper.range.add(plot.index)

# Create a pan tool and give it a reference to the plot
pan = PanTool(plot, drag_button="left")
broadcaster.tools.append(pan)

# allows to zoom
zoom = ZoomTool(plot, tool_mode="box", always_on = False, visible = True)
plot.overlays.append(zoom)


#adds plot to the container
self.container.add(plot)

# appends broadcaster to the container
self.container.tools.append(broadcaster)

# title of the container
self.container.overlays.append(PlotLabel("left plot", component=self.container, overlay_position = "top"))

#==============end of first container===========================

#====================second container===========================

#first plot2
index3 = linspace(-10*pi,10*pi,500)
plot2 = create_scatter_plot((index3, sin(index3)), color = "blue", index_bounds=(self.rangeXMin, self.rangeXMax), value_bounds = (self.ymin, self.ymax))
plot2.bgcolor = "white"
plot2.border_visible = True
plot2.value_mapper = value_mapper # the plot uses the same index and
#plot2.index_mapper = index_mapper # value like the plots of container1
self.sync_trait("rangeXMin", plot2.index_mapper.range, "low", False)
self.sync_trait("rangeXMax", plot2.index_mapper.range, "high", False)


plot2.index_mapper.range.low = 0
plot2.index_mapper.range.high = 2
#value_mapper.range.add(plot2.value)
#index_mapper.range.add(plot2.index)
add_default_grids(plot2)
add_default_axes(plot2)

#adds plot to the container
self.container2.add(plot2)

# title of the container
self.container2.overlays.append(PlotLabel("right plot", component=self.container, overlay_position = "top"))

index_mapper.on_trait_change(self.on_mapper_updated, "updated")

#=============end of second container===========================

def on_mapper_updated(self, mapper, name, value):
if not self.rangeselect.selection:
self.rangeXMin = mapper.range.low
self.rangeXMax = mapper.range.high

def on_selection_changed(self, selection):
if selection != None:
self.rangeXMin, self.rangeXMax = selection

gui = Trait()
gui.configure_traits()

关于python - Chaco:从 Chaco 图中获取索引和值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/12280693/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com