- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
做的时候:
import numpy as np
a = np.array([1,2,3])
b = np.array([4,5,6,7])
print a+b
当然有错误:
ValueError: operands could not be broadcast together with shapes (3,) (4,)
当两个不同大小的数组相加或相乘时,是否可以使 numpy 数组自动截断为最小大小?
示例:此处 a
的长度为 3,b
的长度为 4,因此我们在执行之前自动将 b
截断为长度 3添加。 a+b
的期望结果:
[5 7 9]
这可以通过子类化 np.array
来完成吗?
备注:我想避免使用 a[:3] + b[:3]
自己手动截断所有数组。我希望能够只编写 a+b
。
最佳答案
所以,首先:你想要做的是糟糕的形式。重新定义简单的操作通常会引起各种令人头疼的问题。为这样的东西子类化 np.array 似乎是一个可怕的想法。
话虽如此,这是可能的。这是一个简单的方法:
import numpy as np
class truncarray(np.ndarray):
def __new__( cls, array ):
obj = np.asarray(array).view(cls)
return obj
def __add__( a, b ):
s = slice(0, min(len(a),len(b)))
return np.add(a[s],b[s])
__radd__ = __add__
a = truncarray([1,2,3])
b = truncarray([4,5,6,7])
a_array = np.array([1,2,3])
b_array = np.array([4,5,6,7])
现在,让我们看看这把一切搞得一团糟:
根据需要添加截断:
In [17]: a+b
Out[17]: truncarray([5, 7, 9])
添加数字不再有效:
In [18]: a_array+1
Out[18]: array([2, 3, 4])
In [19]: a+1
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-19-fdcaab9110f2> in <module>()
----> 1 a+1
<ipython-input-2-3651dc87cb0e> in __add__(a, b)
4 return obj
5 def __add__( a, b ):
----> 6 s = slice(0, min(len(a),len(b)))
7 return np.add(a[s],b[s])
8 __radd__ = __add__
TypeError: object of type 'int' has no len()
当考虑 truncarrays 和数组的混合时,加法不再具有传递性:
In [20]: a+b_array+a_array
Out[20]: truncarray([ 6, 9, 12])
In [21]: b_array+a+a_array
Out[21]: truncarray([ 6, 9, 12])
In [22]: b_array+a_array+a
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-22-bcd145daa775> in <module>()
----> 1 b_array+a_array+a
ValueError: operands could not be broadcast together with shapes (4,) (3,)
事实上,它甚至不是关联的(!):
In [23]: a+(b_array+a_array)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-413ce83f55c2> in <module>()
----> 1 a+(b_array+a_array)
ValueError: operands could not be broadcast together with shapes (4,) (3,)
至少,如果您这样做,您需要添加对不同类型的处理。但请考虑 Anton 的回答:这是更安全的方法。
关于python - 自动截断 numpy 数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34581208/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!