- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试弄清楚如何为 sklearn.neighbors.KNeighborsRegressor
构建一个工作流程,其中包括:
scikit-learn 中有太多不同的选项,以至于我在决定我需要哪些类时有点不知所措。
除了sklearn.neighbors.KNeighborsRegressor
,我想我还需要:
sklearn.pipeline.Pipeline
sklearn.preprocessing.Normalizer
sklearn.model_selection.GridSearchCV
sklearn.model_selection.cross_val_score
sklearn.feature_selection.selectKBest
OR
sklearn.feature_selection.SelectFromModel
谁能告诉我这个管道/工作流程的定义是什么样的?我认为应该是这样的:
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Normalizer
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import cross_val_score, GridSearchCV
# build regression pipeline
pipeline = Pipeline([('normalize', Normalizer()),
('kbest', SelectKBest(f_classif)),
('regressor', KNeighborsRegressor())])
# try knn__n_neighbors from 1 to 20, and feature count from 1 to len(features)
parameters = {'kbest__k': list(range(1, X.shape[1]+1)),
'regressor__n_neighbors': list(range(1,21))}
# outer cross-validation on model, inner cross-validation on hyperparameters
scores = cross_val_score(GridSearchCV(pipeline, parameters, scoring="neg_mean_squared_error", cv=10),
X, y, cv=10, scoring="neg_mean_squared_error", verbose=2)
rmses = np.abs(scores)**(1/2)
avg_rmse = np.mean(rmses)
print(avg_rmse)
它似乎没有出错,但我的一些担忧是:
cross_val_score
和 GridSearchCV 使用 scoring="neg_mean_squared_error"
? SelectKBest, f_classif
是用于为 KNeighborsRegressor
模型选择特征的最佳选择吗?非常感谢任何帮助!
最佳答案
您的代码似乎没问题。
对于 cross_val_score
和 GridSearchCV
的 scoring="neg_mean_squared_error"
,我会做同样的事情来确保一切正常,但是对此进行测试的唯一方法是删除两者之一,然后查看结果是否发生变化。
SelectKBest
是一个很好的方法,但您也可以使用 SelectFromModel
或者您可以找到的其他方法 here
最后,为了获得最佳参数和特征得分,我对您的代码进行了如下修改:
import ...
pipeline = Pipeline([('normalize', Normalizer()),
('kbest', SelectKBest(f_classif)),
('regressor', KNeighborsRegressor())])
# try knn__n_neighbors from 1 to 20, and feature count from 1 to len(features)
parameters = {'kbest__k': list(range(1, X.shape[1]+1)),
'regressor__n_neighbors': list(range(1,21))}
# changes here
grid = GridSearchCV(pipeline, parameters, cv=10, scoring="neg_mean_squared_error")
grid.fit(X, y)
# get the best parameters and the best estimator
print("the best estimator is \n {} ".format(grid.best_estimator_))
print("the best parameters are \n {}".format(grid.best_params_))
# get the features scores rounded in 2 decimals
pip_steps = grid.best_estimator_.named_steps['kbest']
features_scores = ['%.2f' % elem for elem in pip_steps.scores_ ]
print("the features scores are \n {}".format(features_scores))
feature_scores_pvalues = ['%.3f' % elem for elem in pip_steps.pvalues_]
print("the feature_pvalues is \n {} ".format(feature_scores_pvalues))
# create a tuple of feature names, scores and pvalues, name it "features_selected_tuple"
featurelist = ['age', 'weight']
features_selected_tuple=[(featurelist[i], features_scores[i],
feature_scores_pvalues[i]) for i in pip_steps.get_support(indices=True)]
# Sort the tuple by score, in reverse order
features_selected_tuple = sorted(features_selected_tuple, key=lambda
feature: float(feature[1]) , reverse=True)
# Print
print 'Selected Features, Scores, P-Values'
print features_selected_tuple
使用我的数据的结果:
the best estimator is
Pipeline(steps=[('normalize', Normalizer(copy=True, norm='l2')), ('kbest', SelectKBest(k=2, score_func=<function f_classif at 0x0000000004ABC898>)), ('regressor', KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=18, p=2,
weights='uniform'))])
the best parameters are
{'kbest__k': 2, 'regressor__n_neighbors': 18}
the features scores are
['8.98', '8.80']
the feature_pvalues is
['0.000', '0.000']
Selected Features, Scores, P-Values
[('correlation', '8.98', '0.000'), ('gene', '8.80', '0.000')]
关于python - 将 sklearn 管道 + 嵌套交叉验证放在一起进行 KNN 回归,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45150652/
我想使用单个(交叉)编译器来编译不同 ARM 调用约定的代码:因为我总是想使用浮点和 NEON 指令,所以我只想选择硬浮点调用约定或软浮点(softfp)调用约定。 我的编译器默认为硬浮点,但它支持我
假设我正在构建一个依赖于两个库的 java 应用程序:A 和 B。A 和 B 都依赖于库 C。管理 A 和 B 使用相同版本的最佳方法是什么所以他们不冲突?我正在使用 Gradle。 最佳答案 从 G
我想在按钮的文本上添加图像。如果我将图像添加为按钮的背景,它就会添加到文本下方。预期结果作为图像添加。请帮忙 更新:我需要以编程方式执行此操作。 最佳答案 在 XML 中, * 在代码中
我已经开始使用 CSS3 制作动画了。 我尝试创建一个动画汉堡菜单,但结果有点难看。顶部和底部的条向右平移一点。所以旋转动画不是很流畅和正确。 这是结果 => 这是我的代码: /* HTML */
给定一个具有2条相交曲线的图像,如下图所示,我如何使用opencv或python检测和区分2条曲线? (所以我需要2条单独的曲线) 最佳答案 您可以扫描每一列,并从连接的零件中识别出簇。 伪算法: l
我正在尝试在 redhat 集群(x86_64 主机)上设置 cross-mingw。我没有 root 访问权限,并且可用的 mingw 二进制文件不起作用(坏 glibc 版本等)。我正在阅读本教程
我正在尝试在javaFX中开发一个游戏,当两个图像相交时,分数将被更新,并且障碍物将不可见。但不幸的是,在游戏中分数不断更新。 我想我无法在游戏中正确地使图像不可见。 以下是相关类的完整代码: pac
pikastar dot com 是网站,当向下滚动它然后在导航菜单展开固定位置时它 > 将穿过主 div。我该如何修复它。 #topNav.sticky { box-shadow: 0 10
我正在使用 Eclipse为 ARM 处理器交叉编译 g++ 项目。我在 Windows 环境中使用 yagarto 工具链。我对 C 项目没有问题,但是对于 C++,我一直收到错误: libc.a(
我想从两个哈希数组中获取并集/交集/差集,例如: array1 = [{:name =>'Guy1', :age => 45},{:name =>'Guy2', :age => 45}] array2
有没有办法在调用任何 Controller 操作之前执行一些代码? 我需要根据 get 参数的值设置 session 变量,而不考虑调用哪个 Controller 。 当然,一旦这个处理完成,请求需要
我刚开始使用 3D 网格,面向用于有限元分析。我想在立方体状矩阵中模拟 Material 的夹杂物(任何形状,但主要对球体和椭圆体感兴趣)。这些夹杂物不应彼此重合。 所以我想为python使用某种包,
我想知道以跨平台方式操作应用程序设置的最佳解决方案是什么。 在 iOS 中,我们可以在设置屏幕中更改应用程序外部的设置,但在 windows phone 和 android 中我们没有。 所以,我的想
var barcodeNum = ko.observable(""); VelocityMeetings.scan = function (params) { var errorMessage = k
这个问题在这里已经有了答案: Transforming data.frame in R (2 个答案) 关闭10 年前。 过去我问过一个关于如何create cross tables from a
我有两个共享同一个工厂的 Controller 。其中一个 Controller 正在更新工厂变量。其他人应该注意该变化并稍后显示。 我是这样尝试的: http://plnkr.co/edit/q1N
标题不好,但这是我发现的将我的问题与简单的表格交叉区分开来的方式,因为我之前的研究总是让我接触到这类主题。 我有几个表 - 为了简化起见,我们只用 3 个表来命名它们:A、B、C。我想将它们全部放在一
我需要做这样的事情(在 MySQL 中),我使用 UNION 的尝试直到现在才奏效。 理论上: SELECT * FROM tableA A JOIN tableB B ON A.tableAId =
注意:使用SDL 2.0,Cross header class问题 我在类之间进行交叉引用,主要是我的类初始化渲染器和我的纹理类引用渲染初始化。现在,我已经能够运行该程序,直到我开始放入纹理类,代码也
我有一个这样的字母数组 var letters = ["Y", "X", "A", "Y", "O", "H", "A", "O", "O"]; 我创建了一个循环来
我是一名优秀的程序员,十分优秀!