gpt4 book ai didi

python - 从数据框中查找列的唯一组合

转载 作者:行者123 更新时间:2023-11-28 21:37:42 25 4
gpt4 key购买 nike

在我下面的数据集中,我需要找到唯一的序列并为它们分配一个序列号..

数据集:

user    age maritalstatus   product
A Young married 111
B young married 222
C young Single 111
D old single 222
E old married 111
F teen married 222
G teen married 555
H adult single 444
I adult single 333

预期输出:
young   married     0
young single 1
old single 2
old married 3
teen married 4
adult single 5

找到如上所示的唯一值后,如果我传递如下所示的新用户,
user age maritalstatus  
X young married

它应该将产品作为列表返回给我。
X : [111, 222]

如果没有序列,如下所示
user     age     maritalstatus  
Y adult married

它应该给我一个空列表
Y : []

最佳答案

首先只选择输出列并添加 drop_duplicates , 最后通过 range 添加新列:

df = df[['age','maritalstatus']].drop_duplicates()
df['no'] = range(len(df.index))
print (df)
age maritalstatus no
0 Young married 0
1 young married 1
2 young Single 2
3 old single 3
4 old married 4
5 teen married 5
7 adult single 6

如果要先将所有值转换为小写:
df = df[['age','maritalstatus']].apply(lambda x: x.str.lower()).drop_duplicates()
df['no'] = range(len(df.index))
print (df)
age maritalstatus no
0 young married 0
2 young single 1
3 old single 2
4 old married 3
5 teen married 4
7 adult single 5

编辑:

先转换成 lowercase :
df[['age','maritalstatus']] = df[['age','maritalstatus']].apply(lambda x: x.str.lower())
print (df)
user age maritalstatus product
0 A young married 111
1 B young married 222
2 C young single 111
3 D old single 222
4 E old married 111
5 F teen married 222
6 G teen married 555
7 H adult single 444
8 I adult single 333

然后使用 merge 独特的 product转换为 list :
df2 = pd.DataFrame([{'user':'X', 'age':'young', 'maritalstatus':'married'}])
print (df2)
age maritalstatus user
0 young married X

a = pd.merge(df, df2, on=['age','maritalstatus'])['product'].unique().tolist()
print (a)
[111, 222]
df2 = pd.DataFrame([{'user':'X', 'age':'adult', 'maritalstatus':'married'}])
print (df2)
age maritalstatus user
0 adult married X

a = pd.merge(df, df2, on=['age','maritalstatus'])['product'].unique().tolist()
print (a)
[]

但如果需要列使用 transform :
df['prod'] = df.groupby(['age', 'maritalstatus'])['product'].transform('unique')
print (df)
user age maritalstatus product prod
0 A young married 111 [111, 222]
1 B young married 222 [111, 222]
2 C young single 111 [111]
3 D old single 222 [222]
4 E old married 111 [111]
5 F teen married 222 [222, 555]
6 G teen married 555 [222, 555]
7 H adult single 444 [444, 333]
8 I adult single 333 [444, 333]

编辑1:
a = (pd.merge(df, df2, on=['age','maritalstatus'])
.groupby('user_y')['product']
.apply(lambda x: x.unique().tolist())
.to_dict())
print (a)
{'X': [111, 222]}

详情 :
print (pd.merge(df, df2, on=['age','maritalstatus']))
user_x age maritalstatus product user_y
0 A young married 111 X
1 B young married 222 X

关于python - 从数据框中查找列的唯一组合,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49110156/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com