gpt4 book ai didi

python - PyTorch : predict single example

转载 作者:行者123 更新时间:2023-11-28 21:36:25 24 4
gpt4 key购买 nike

遵循以下示例:

https://github.com/jcjohnson/pytorch-examples

此代码可以成功训练:

# Code in file tensor/two_layer_net_tensor.py
import torch

device = torch.device('cpu')
# device = torch.device('cuda') # Uncomment this to run on GPU

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random input and output data
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)

# Randomly initialize weights
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y
h = x.mm(w1)
h_relu = h.clamp(min=0)
y_pred = h_relu.mm(w2)

# Compute and print loss; loss is a scalar, and is stored in a PyTorch Tensor
# of shape (); we can get its value as a Python number with loss.item().
loss = (y_pred - y).pow(2).sum()
print(t, loss.item())

# Backprop to compute gradients of w1 and w2 with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.t().mm(grad_y_pred)
grad_h_relu = grad_y_pred.mm(w2.t())
grad_h = grad_h_relu.clone()
grad_h[h < 0] = 0
grad_w1 = x.t().mm(grad_h)

# Update weights using gradient descent
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2

我如何预测一个例子?到目前为止,我的经验是仅使用 numpy使用前馈网络。训练模型后,我使用前向传播,但仅举一个例子:
numpy代码段,其中 new是我尝试预测的输出值:
new = np.asarray(toclassify) 
Z1 = np.dot(weight_layer_1, new.T) + bias_1
sigmoid_activation_1 = sigmoid(Z1)
Z2 = np.dot(weight_layer_2, sigmoid_activation_1) + bias_2
sigmoid_activation_2 = sigmoid(Z2)
sigmoid_activation_2包含预测的矢量属性

惯用的PyTorch方法是否相同?使用前向传播以进行单个预测?

最佳答案

您发布的代码是一个简单的演示,试图揭示这种深度学习框架的内部机制。只要定义了网络结构,这些框架(包括PyTorch,Keras,Tensorflow等)都会自动处理正向计算,跟踪和应用渐变。但是,您显示的代码仍然尝试手动执行这些操作。这就是为什么在预测一个示例时会感到笨拙的原因,因为您仍在从头开始。

实际上,我们将定义一个从torch.nn.Module继承的模型类,并在__init__函数中初始化所有网络组件(例如神经层,GRU,LSTM层等),并在forward函数中定义这些组件如何与网络输入交互。

从您提供的页面中获取示例:

# Code in file nn/two_layer_net_module.py
import torch

class TwoLayerNet(torch.nn.Module):
def __init__(self, D_in, H, D_out):
"""
In the constructor we instantiate two nn.Linear modules and
assign them as
member variables.
"""
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(H, D_out)

def forward(self, x):
"""
In the forward function we accept a Tensor of input data and we must return
a Tensor of output data. We can use Modules defined in the constructor as
well as arbitrary (differentiable) operations on Tensors.
"""
h_relu = self.linear1(x).clamp(min=0)
y_pred = self.linear2(h_relu)
return y_pred

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Construct our model by instantiating the class defined above.
model = TwoLayerNet(D_in, H, D_out)

# Construct our loss function and an Optimizer. The call to
model.parameters()
# in the SGD constructor will contain the learnable parameters of the two
# nn.Linear modules which are members of the model.
loss_fn = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)

# Compute and print loss
loss = loss_fn(y_pred, y)
print(t, loss.item())

# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()

该代码定义了一个名为TwoLayerNet的模型,它初始化了 __init__函数中的两个线性层,并进一步定义了这两个线性层如何与 x函数中的输入 forward交互。定义好模型后,我们可以简单地通过调用模型实例来执行单个前馈操作,如代码片段结尾所示:
y_pred = model(x)

关于python - PyTorch : predict single example,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51041128/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com