gpt4 book ai didi

Python:如何将列表列表的元素转换为无向图?

转载 作者:行者123 更新时间:2023-11-28 21:33:30 24 4
gpt4 key购买 nike

我有一个程序可以检索 PubMed 出版物的列表,并希望构建一个共同作者图,这意味着对于每篇文章,我想将每个作者(如果不存在)添加为一个顶点并添加一个无向边(或增加其权重)在每位合著者之间。

我设法编写了程序的第一个检索每个出版物的作者列表的程序,并且我知道我可以使用 NetworkX 库来构建图形(然后将其导出到 Gephi 的 GraphML),但无法全神贯注于如何将“列表列表”转换为图形。

下面是我的代码。非常感谢。

### if needed install the required modules
### python3 -m pip install biopython
### python3 -m pip install numpy

from Bio import Entrez
from Bio import Medline
Entrez.email = "rja@it.com"
handle = Entrez.esearch(db="pubmed", term='("lung diseases, interstitial"[MeSH Terms] NOT "pneumoconiosis"[MeSH Terms]) AND "artificial intelligence"[MeSH Terms] AND "humans"[MeSH Terms]', retmax="1000", sort="relevance", retmode="xml")
records = Entrez.read(handle)
ids = records['IdList']
h = Entrez.efetch(db='pubmed', id=ids, rettype='medline', retmode='text')
#now h holds all of the articles and their sections
records = Medline.parse(h)
# initialize an empty vector for the authors
authors = []
# iterate through all articles
for record in records:
#for each article (record) get the authors list
au = record.get('AU', '?')
# now from the author list iterate through each author
for a in au:
if a not in authors:
authors.append(a)
# following is just to show the alphabetic list of all non repeating
# authors sorted alphabetically (there should become my graph nodes)
authors.sort()
print('Authors: {0}'.format(', '.join(authors)))

最佳答案

太棒了——代码在运行,所以数据结构很清晰!作为一种方法,我们为文章/作者和作者/共同作者构建连接矩阵。

作者名单:如果要描述文章和作者之间的关系,我想你需要每篇文章的作者列表

authors = []
author_lists = [] # <--- new
for record in records:
au = record.get('AU', '?')
author_lists.append(au) # <--- new
for a in au:
if a not in authors: authors.append(a)
authors.sort()
print(authors)

numpy、pandas matplotlib - 这正是我习惯的工作方式

import numpy as np
import pandas as pd
import matplotlib.pylab as plt

AU = np.array(authors) # authors as np-array
NA = AU.shape[0] # number of authors

NL = len(author_lists) # number of articles/author lists
AUL = np.array(author_lists) # author lists as np-array

print('NA, NL', NA,NL)

连接文章/作者

CON = np.zeros((NL,NA),dtype=int) # initializes connectivity matrix
for j in range(NL): # run through the article's author list
aul = np.array(AUL[j]) # get a single author list as np-array
z = np.zeros((NA),dtype=int)
for k in range(len(aul)): # get a singel author
z += (AU==aul[k]) # get it's position in the AU, add it up
CON[j,:] = z # insert the result in the connectivity matrix

#---- grafics --------
fig = plt.figure(figsize=(20,10)) ;
plt.spy(CON, marker ='s', color='chartreuse', markersize=5)
plt.xlabel('Authors'); plt.ylabel('Articles'); plt.title('Authors of the articles', fontweight='bold')
plt.show()

enter image description here

Connectivity authors/co-authors,生成的矩阵是对称的

df = pd.DataFrame(CON)          # let's use pandas for the following step
ACON = np.zeros((NA,NA)) # initialize the conncetivity matrix
for j in range(NA): # run through the authors
df_a = df[df.iloc[:, j] >0] # give all rows with author j involved
w = np.array(df_a.sum()) # sum the rows, store it in np-array
ACON[j] = w # insert it in the connectivity matrix

#---- grafics --------
fig = plt.figure(figsize=(10,10)) ;
plt.spy(ACON, marker ='s', color='chartreuse', markersize=3)
plt.xlabel('Authors'); plt.ylabel('Authors'); plt.title('Authors that are co-authors', fontweight='bold')
plt.show()

enter image description here

对于带有Networkx 的图形,我认为您需要清楚地知道您想要表示什么,因为有很多点和很多可能性(也许您发布了一个示例?)。下面仅绘制了一些作者圈子。

import networkx as nx

def set_edges(Q):
case = 'A'
if case=='A':
Q1 = np.roll(Q,shift=1)
Edges = np.vstack((Q,Q1)).T
return Edges

Q = nx.Graph()
Q.clear()

AT = np.triu(ACON) # only the tridiagonal is needed
fig = plt.figure(figsize=(7,7)) ;
for k in range (9):
iA = np.argwhere(AT[k]>0).ravel() # get the indices with AT{k}>0
Edges = set_edges(iA) # select the involved nodes and set the edges
Q.add_edges_from(Edges, with_labels=True)
nx.draw(Q, alpha=0.5)
plt.title('Co-author-ship', fontweight='bold')
plt.show()

enter image description here

关于Python:如何将列表列表的元素转换为无向图?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54609288/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com