gpt4 book ai didi

python 按周或按月拆分 pandas 数据框,并根据这些 sp 对数据进行分组

转载 作者:行者123 更新时间:2023-11-28 21:26:18 24 4
gpt4 key购买 nike

DateOccurred    CostCentre  TimeDifference
03/09/2012 2073 28138
03/09/2012 6078 34844
03/09/2012 8273 31215
03/09/2012 8367 28160
03/09/2012 8959 32037
03/09/2012 9292 30118
03/09/2012 9532 34200
03/09/2012 9705 27240
03/09/2012 10085 31431
03/09/2012 10220 22555
04/09/2012 6078 41126
04/09/2012 7569 31101
04/09/2012 8273 30994
04/09/2012 8959 30064
04/09/2012 9532 34655
04/09/2012 9705 26475
04/09/2012 10085 31443
04/09/2012 10220 33970
05/09/2012 2073 28221
05/09/2012 6078 27894
05/09/2012 7569 29012
05/09/2012 8239 42208
05/09/2012 8273 31128
05/09/2012 8367 27993
05/09/2012 8959 20669
05/09/2012 9292 33070
05/09/2012 9532 8189
05/09/2012 9705 27540
05/09/2012 10085 28798
05/09/2012 10220 23164
06/09/2012 2073 28350
06/09/2012 6078 35648
06/09/2012 7042 27129
06/09/2012 7569 31546
06/09/2012 8239 39945
06/09/2012 8273 31107
06/09/2012 8367 27795
06/09/2012 9292 32974
06/09/2012 9532 30320
06/09/2012 9705 37462
06/09/2012 10085 31703
06/09/2012 10220 7807
06/09/2012 14573 186
07/09/2012 0 0
07/09/2012 0 0
07/09/2012 2073 28036
07/09/2012 6078 31969
07/09/2012 7569 32941
07/09/2012 8273 30073
07/09/2012 8367 29391
07/09/2012 9292 31927
07/09/2012 9532 30127
07/09/2012 9705 27604
07/09/2012 10085 28108
08/09/2012 2073 28463
10/09/2012 6078 31266
10/09/2012 8239 16390
10/09/2012 8273 31140
10/09/2012 8959 30858
10/09/2012 9532 30794
10/09/2012 9705 28752
11/09/2012 0 0
11/09/2012 0 0
11/09/2012 0 0
11/09/2012 0 0
11/09/2012 0 0
11/09/2012 2073 28159
11/09/2012 6078 36835
11/09/2012 8239 45354
11/09/2012 8273 30922
11/09/2012 8367 31382
11/09/2012 8959 29670
11/09/2012 9292 33582
11/09/2012 9705 29394
11/09/2012 10085 17140
12/09/2012 2073 28283
12/09/2012 6078 31139
12/09/2012 7042 35063
12/09/2012 8273 31075
12/09/2012 8367 29795
12/09/2012 9292 33496
12/09/2012 9532 31669
12/09/2012 9705 26166
12/09/2012 10085 29889
12/09/2012 10220 35656
13/09/2012 2073 28144
13/09/2012 6078 30544
13/09/2012 7097 30866
13/09/2012 8273 30772
13/09/2012 8367 32387
13/09/2012 8959 29307
13/09/2012 9292 32348
13/09/2012 9532 28137
13/09/2012 9705 28823
13/09/2012 10085 31543
13/09/2012 10220 28293
14/09/2012 0 12433
14/09/2012 0 12434
14/09/2012 0 12434
14/09/2012 0 12434
14/09/2012 0 12434
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 12433
14/09/2012 0 0
14/09/2012 0 12433
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 1720
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 384
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 0
14/09/2012 0 383
14/09/2012 2073 28438
14/09/2012 6078 27255
14/09/2012 8273 29989
14/09/2012 8959 26892
14/09/2012 9292 33202
14/09/2012 9532 30862
14/09/2012 9705 26857
14/09/2012 10085 32657
14/09/2012 10220 27296
15/09/2012 6078 3832
17/09/2012 6078 30004
17/09/2012 7569 30390
17/09/2012 8239 41421
17/09/2012 8273 26337
17/09/2012 8367 31631
17/09/2012 8959 17989
17/09/2012 9292 35703
17/09/2012 9532 36542
17/09/2012 9705 27488
17/09/2012 10085 30849
17/09/2012 10220 32575
18/09/2012 2073 28293
18/09/2012 6078 27450
18/09/2012 7569 30323
18/09/2012 8239 38481
18/09/2012 8273 31154
18/09/2012 8367 27944
18/09/2012 8959 28196
18/09/2012 9292 30844
18/09/2012 9532 33128
18/09/2012 9705 32100
19/09/2012 2073 28227
19/09/2012 6078 32243
19/09/2012 7569 29041
19/09/2012 8239 42791
19/09/2012 8273 30966
19/09/2012 8367 26420
19/09/2012 8959 29394
19/09/2012 9292 14865
19/09/2012 9532 23618
19/09/2012 10085 31614
19/09/2012 10220 8686
20/09/2012 2073 28260
20/09/2012 6078 30446
20/09/2012 7097 34909
20/09/2012 7569 30869
20/09/2012 8273 31079
20/09/2012 8367 30162
20/09/2012 9292 13104
20/09/2012 9532 36614
20/09/2012 9705 35617
20/09/2012 10085 31821
20/09/2012 10220 30055
20/09/2012 14573 468
21/09/2012 0 0
21/09/2012 0 0
21/09/2012 0 0
21/09/2012 0 0
21/09/2012 0 0
21/09/2012 0 0
21/09/2012 0 0
21/09/2012 0 0
21/09/2012 0 0
21/09/2012 0 3
21/09/2012 0 0
21/09/2012 0 0
21/09/2012 0 3
21/09/2012 2073 28308
21/09/2012 6078 33833
21/09/2012 7569 32335
21/09/2012 9292 33824
21/09/2012 9532 33376
21/09/2012 10220 21002
22/09/2012 2073 28402
23/09/2012 2073 28109
24/09/2012 2073 28431
24/09/2012 6078 30027
24/09/2012 7097 31914
24/09/2012 8239 35617
24/09/2012 8273 30670
24/09/2012 8367 29084
24/09/2012 8959 31023
24/09/2012 9292 34394
24/09/2012 9532 31255
24/09/2012 9705 18758
24/09/2012 10085 29290
24/09/2012 10220 33230
25/09/2012 2073 28506
25/09/2012 6078 32043
25/09/2012 7042 34953
25/09/2012 7569 30898
25/09/2012 8239 41297
25/09/2012 8273 31012
25/09/2012 8367 29645
25/09/2012 8959 29904
25/09/2012 9532 37875
25/09/2012 9705 13280
25/09/2012 10085 35023
25/09/2012 10220 31359
26/09/2012 2073 28388
26/09/2012 6078 29765
26/09/2012 7097 31561
26/09/2012 7569 29151
26/09/2012 8239 40369
26/09/2012 8367 28174
26/09/2012 8959 26554
26/09/2012 9292 32104
26/09/2012 9532 33194
26/09/2012 9705 30377
26/09/2012 10085 31503
26/09/2012 10220 28310
27/09/2012 0 0
27/09/2012 0 0
27/09/2012 0 0
27/09/2012 0 0
27/09/2012 0 0
27/09/2012 0 0
27/09/2012 0 0
27/09/2012 0 0
27/09/2012 2073 28491
27/09/2012 6078 31137
27/09/2012 8239 38403
27/09/2012 8273 31117
27/09/2012 8367 28462
27/09/2012 9292 32387
27/09/2012 9532 23023
27/09/2012 9705 32790
27/09/2012 10085 33460
27/09/2012 10220 31782
28/09/2012 0 161
28/09/2012 2073 28381
28/09/2012 7569 32322
28/09/2012 8239 38362
28/09/2012 8273 30533
28/09/2012 8959 17128
28/09/2012 9292 32484
28/09/2012 9532 18586
28/09/2012 9705 27902
29/09/2012 2073 28583
  1. 以上是一个包含一百万条记录的数据框示例
  2. 如何按周或月对它进行切片或分组,并按成本中心对秒数列求和。*
  3. 我已经阅读/尝试过本网站上通过搜索
    出现的 30 篇文章列出项 pandas、python、groupby、split、dataframe、week 没有成功。
  4. 我正在使用 python 2.7 和 pandas 0.9。
  5. 我已阅读 pandas 0.9 教程中的时间序列/日期功能部分,但无法阅读 使任何东西都可以使用数据框。我想使用其中的功能,例如《商业周刊》

预期输出

DateOccurred CostCentre TimeDifference
2012-03-11 0 500000
2012-03-11 2073 570000
2012-03-18 0 650000
2012-03-18 2073 425000
2012-03-25 0 378000
2012-04-25 2073 480000

最佳答案

也许先按 CostCentre 分组,然后使用 Series/DataFrame resample()

In [72]: centers = {}

In [73]: for center, idx in df.groupby("CostCentre").groups.iteritems():
....: timediff = df.ix[idx].set_index("Date")['TimeDifference']
....: centers[center] = timediff.resample("W", how=sum)

In [77]: pd.concat(centers, names=['CostCentre'])
Out[77]:
CostCentre Date
0 2012-09-09 0
2012-09-16 89522
2012-09-23 6
2012-09-30 161
2073 2012-09-09 141208
2012-09-16 113024
2012-09-23 169599
2012-09-30 170780
6078 2012-09-09 171481
2012-09-16 160871
2012-09-23 153976
2012-09-30 122972

其他详细信息:

当 pd.read_* 函数的 parse_datesTrue 时,还必须设置 index_col

In [28]: df = pd.read_clipboard(sep=' +', parse_dates=True, index_col=0,
....: dayfirst=True)

In [30]: df.head()
Out[30]:
CostCentre TimeDifference
DateOccurred
2012-09-03 2073 28138
2012-09-03 6078 34844
2012-09-03 8273 31215
2012-09-03 8367 28160
2012-09-03 8959 32037

由于 resample() 需要时间序列索引的帧/系列,因此在创建期间设置索引无需为每个组单独设置索引。 GroupBy 对象也有一个 apply 方法,它基本上是围绕上面使用 pd.concat() 完成的“组合”步骤的语法糖。

In [37]: x = df.groupby("CostCentre").apply(lambda df: 
....: df['TimeDifference'].resample("W", how=sum))

In [38]: x.head(12)
Out[38]:
CostCentre DateOccurred
0 2012-09-09 0
2012-09-16 89522
2012-09-23 6
2012-09-30 161
2073 2012-09-09 141208
2012-09-16 113024
2012-09-23 169599
2012-09-30 170780
6078 2012-09-09 171481
2012-09-16 160871
2012-09-23 153976
2012-09-30 122972

关于python 按周或按月拆分 pandas 数据框,并根据这些 sp 对数据进行分组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13223360/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com