gpt4 book ai didi

python - 在 Pandas 中将索引从整数更改为日期时出现问题

转载 作者:行者123 更新时间:2023-11-28 21:25:34 26 4
gpt4 key购买 nike

我在将 pandas DataFrame 索引从整数更改为日期时间时遇到问题。我想这样做,以便我可以调用 reindex 并填写表中列出的日期之间的日期。请注意,我目前必须使用 pandas 0.7.3,因为我也在使用 qstk,而 qstk 依赖于 pandas 0.7.3

首先,这是我的布局:

(Pdb) df
AAPL GOOG IBM XOM date
1 0 0 4000 0 2011-01-13 16:00:00
2 0 1000 4000 0 2011-01-26 16:00:00
3 0 1000 4000 0 2011-02-02 16:00:00
4 0 1000 4000 4000 2011-02-10 16:00:00
6 0 0 1800 4000 2011-03-03 16:00:00
7 0 0 3300 4000 2011-06-03 16:00:00
8 0 0 0 4000 2011-05-03 16:00:00
9 1200 0 0 4000 2011-06-10 16:00:00
11 1200 0 0 4000 2011-08-01 16:00:00
12 0 0 0 4000 2011-12-20 16:00:00

(Pdb) type(df['date'])
<class 'pandas.core.series.Series'>

(Pdb) df2 = DataFrame(index=df['date'])
(Pdb) df2
Empty DataFrame
Columns: array([], dtype=object)
Index: array([2011-01-13 16:00:00, 2011-01-26 16:00:00, 2011-02-02 16:00:00,
2011-02-10 16:00:00, 2011-03-03 16:00:00, 2011-06-03 16:00:00,
2011-05-03 16:00:00, 2011-06-10 16:00:00, 2011-08-01 16:00:00,
2011-12-20 16:00:00], dtype=object)

(Pdb) df2.merge(df,left_index=True,right_on='date')
AAPL GOOG IBM XOM date
1 0 0 4000 0 2011-01-13 16:00:00
2 0 1000 4000 0 2011-01-26 16:00:00
3 0 1000 4000 0 2011-02-02 16:00:00
4 0 1000 4000 4000 2011-02-10 16:00:00
6 0 0 1800 4000 2011-03-03 16:00:00
8 0 0 0 4000 2011-05-03 16:00:00
7 0 0 3300 4000 2011-06-03 16:00:00
9 1200 0 0 4000 2011-06-10 16:00:00
11 1200 0 0 4000 2011-08-01 16:00:00
12 0 0 0 4000 2011-12-20 16:00:00

我尝试了多种方法来获取日期时间索引:

1.) 使用带有日期时间值列表的 reindex() 方法。这会创建一个日期时间索引,但随后会为 DataFrame 中的数据填充 NaN。我猜这是因为原始值与整数索引相关联,并且重新索引到日期时间会尝试用默认值填充新索引(如果未指示填充方法,则为 NaNs)。因此:

(Pdb) df.reindex(index=df['date'])
AAPL GOOG IBM XOM date
date
2011-01-13 16:00:00 NaN NaN NaN NaN NaN
2011-01-26 16:00:00 NaN NaN NaN NaN NaN
2011-02-02 16:00:00 NaN NaN NaN NaN NaN
2011-02-10 16:00:00 NaN NaN NaN NaN NaN
2011-03-03 16:00:00 NaN NaN NaN NaN NaN
2011-06-03 16:00:00 NaN NaN NaN NaN NaN
2011-05-03 16:00:00 NaN NaN NaN NaN NaN
2011-06-10 16:00:00 NaN NaN NaN NaN NaN
2011-08-01 16:00:00 NaN NaN NaN NaN NaN
2011-12-20 16:00:00 NaN NaN NaN NaN NaN

2.) 将 DataFrame.merge 与我的原始 df 和第二个数据框 df2 结合使用,这基本上只是一个日期时间索引,没有其他任何内容。所以我最终做了类似的事情:

(pdb) df2.merge(df,left_index=True,right_on='date')
AAPL GOOG IBM XOM date
1 0 0 4000 0 2011-01-13 16:00:00
2 0 1000 4000 0 2011-01-26 16:00:00
3 0 1000 4000 0 2011-02-02 16:00:00
4 0 1000 4000 4000 2011-02-10 16:00:00
6 0 0 1800 4000 2011-03-03 16:00:00
8 0 0 0 4000 2011-05-03 16:00:00
7 0 0 3300 4000 2011-06-03 16:00:00
9 1200 0 0 4000 2011-06-10 16:00:00
11 1200 0 0 4000 2011-08-01 16:00:00

(反之亦然)。但我总是以这种带有整数索引的东西结束。

3.) 从一个带有日期时间索引(从 df 的“日期”字段创建)和一堆空列的空 DataFrame 开始。然后我尝试通过设置相同的列来分配每一列名称等于 df 中的列:

(Pdb) df2['GOOG']=0
(Pdb) df2
GOOG
date
2011-01-13 16:00:00 0
2011-01-26 16:00:00 0
2011-02-02 16:00:00 0
2011-02-10 16:00:00 0
2011-03-03 16:00:00 0
2011-06-03 16:00:00 0
2011-05-03 16:00:00 0
2011-06-10 16:00:00 0
2011-08-01 16:00:00 0
2011-12-20 16:00:00 0
(Pdb) df2['GOOG'] = df['GOOG']
(Pdb) df2
GOOG
date
2011-01-13 16:00:00 NaN
2011-01-26 16:00:00 NaN
2011-02-02 16:00:00 NaN
2011-02-10 16:00:00 NaN
2011-03-03 16:00:00 NaN
2011-06-03 16:00:00 NaN
2011-05-03 16:00:00 NaN
2011-06-10 16:00:00 NaN
2011-08-01 16:00:00 NaN
2011-12-20 16:00:00 NaN

那么,在 pandas 0.7.3 中,我如何使用日期时间索引而不是整数索引重新创建 df?我错过了什么?

最佳答案

我想你在找set_index :

In [11]: df.set_index('date')
Out[11]:
AAPL GOOG IBM XOM
date
2011-01-13 16:00:00 0 0 4000 0
2011-01-26 16:00:00 0 1000 4000 0
2011-02-02 16:00:00 0 1000 4000 0
2011-02-10 16:00:00 0 1000 4000 4000
2011-03-03 16:00:00 0 0 1800 4000
2011-06-03 16:00:00 0 0 3300 4000
2011-05-03 16:00:00 0 0 0 4000
2011-06-10 16:00:00 1200 0 0 4000
2011-08-01 16:00:00 1200 0 0 4000
2011-12-20 16:00:00 0 0 0 4000

关于python - 在 Pandas 中将索引从整数更改为日期时出现问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14077355/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com