- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这将是一个相当简单的问题,我想知道在 Python 中是否有快速和干净的解决方法。
假设我有一个这样定义的 nd 数组:
In [10]: C = np.random.rand(2,3,3)
In [11]: C
Out[11]:
array([[[ 0.43588471, 0.06600133, 0.81145749],
[ 0.20270693, 0.85879686, 0.75778422],
[ 0.68253449, 0.98287412, 0.63804605]],
[[ 0.61591433, 0.36453861, 0.23798795],
[ 0.26761896, 0.00657165, 0.04083067],
[ 0.11177481, 0.55245769, 0.97274592]]])
然后我计算第 3 维数组中一个值与前一个值之间的差值,如下所示:
In [12]: C[:, :, 1:] = C[:, :, 1:] - C[:, :, 0:C.shape[2]-1]
In [13]: C
Out[13]:
array([[[ 0.43588471, -0.36988337, 0.74545616],
[ 0.20270693, 0.65608994, -0.10101264],
[ 0.68253449, 0.30033963, -0.34482807]],
[[ 0.61591433, -0.25137572, -0.12655065],
[ 0.26761896, -0.26104731, 0.03425902],
[ 0.11177481, 0.44068288, 0.42028823]]])
是否可以使用类似的技术返回到原始值,或者我是否必须使用 for 循环和临时变量?
例如,这并不能解决问题:
In [15]: C[:, :, 1:] = C[:, :, 0:C.shape[2]-1] + C[:, :, 1:]
In [16]: C
Out[16]:
array([[[ 0.43588471, 0.06600133, 0.37557278],
[ 0.20270693, 0.85879686, 0.5550773 ],
[ 0.68253449, 0.98287412, -0.04448843]],
[[ 0.61591433, 0.36453861, -0.37792638],
[ 0.26761896, 0.00657165, -0.22678829],
[ 0.11177481, 0.55245769, 0.86097111]]])
最佳答案
首先,计算差异,而不是
C[:, :, 1:] - C[:, :, 0:C.shape[2]-1]
你可以使用 numpy.diff :
np.diff(C, axis = -1)
In [27]: C = np.random.rand(2,3,3)
In [28]: D = C[:, :, 1:] - C[:, :, 0:C.shape[2]-1]
In [29]: E = np.diff(C, axis = -1)
In [30]: np.allclose(D, E)
Out[30]: True
接下来,如果您知道要检索原始 C
,也许最好不要首先覆盖这些值。只需将差异保存在一个单独的数组中:
E = np.diff(C, axis = -1)
毕竟,没有比根本不计算更快的方法来执行计算了:)。
但如果您真的想覆盖这些值,那么要检索原始值,请使用 np.cumsum :
In [20]: C = np.random.rand(2,3,3)
In [21]: D = C.copy()
In [22]: C[:, :, 1:] = np.diff(C, axis = -1)
In [23]: C = np.cumsum(C, axis = -1)
In [24]: np.allclose(C,D)
Out[24]: True
关于python - Numpy数组元素之间的就地差异,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14569287/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!