gpt4 book ai didi

python - 使用 3d 数据和参数在 Scipy 中进行曲线拟合

转载 作者:行者123 更新时间:2023-11-28 21:23:07 26 4
gpt4 key购买 nike

我正在研究在 scipy 中拟合 3d 分布函数。我有一个 numpy 数组,在 x- 和 y-bin 中有计数,我试图将它拟合到一个相当复杂的 3-d 分布函数中。数据适合 26 (!) 个参数,这些参数描述了其两个组成群体的形状。

我在这里了解到,当我调用 leastsq 时,我必须将 x 和 y 坐标作为“args”传递。 unutbu 提供的代码按照为我编写的方式工作,但是当我尝试将其应用于我的特定案例时,出现错误“TypeError: leastsq() got multiple values for keyword argument 'args'”

这是我的代码(抱歉太长了):

import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as spopt
from textwrap import wrap
import collections

cl = 0.5
ch = 3.5
rl = -23.5
rh = -18.5
mbins = 10
cbins = 10

def hist_data(mixed_data, mbins, cbins):
import numpy as np
H, xedges, yedges = np.histogram2d(mixed_data[:,1], mixed_data[:,2], bins = (mbins, cbins), weights = mixed_data[:,3])
x, y = 0.5 * (xedges[:-1] + xedges[1:]), 0.5 * (yedges[:-1] + yedges[1:])
return H.T, x, y

def gauss(x, s, mu, a):
import numpy as np
return a * np.exp(-((x - mu)**2. / (2. * s**2.)))

def tanhlin(x, p0, p1, q0, q1, q2):
import numpy as np
return p0 + p1 * (x + 20.) + q0 * np.tanh((x - q1)/q2)

def func3d(p, x, y):
import numpy as np
from sys import exit
rsp0, rsp1, rsq0, rsq1, rsq2, rmp0, rmp1, rmq0, rmq1, rmq2, rs, rm, ra, bsp0, bsp1, bsq0, bsq1, bsq2, bmp0, bmp1, bmq0, bmq1, bmq2, bs, bm, ba = p
x, y = np.meshgrid(coords[0], coords[1])
rs = tanhlin(x, rsp0, rsp1, rsq0, rsq1, rsq2)
rm = tanhlin(x, rmp0, rmp1, rmq0, rmq1, rmq2)
ra = schechter(x, rap, raa, ram) # unused
bs = tanhlin(x, bsp0, bsp1, bsq0, bsq1, bsq2)
bm = tanhlin(x, bmp0, bmp1, bmq0, bmq1, bmq2)
ba = schechter(x, bap, baa, bam) # unused
red_dist = ra / (rs * np.sqrt(2 * np.pi)) * gauss(y, rs, rm, ra)
blue_dist = ba / (bs * np.sqrt(2 * np.pi)) * gauss(y, bs, bm, ba)
result = red_dist + blue_dist
return result

def residual(p, coords, data):
import numpy as np
model = func3d(p, coords)
res = (model.flatten() - data.flatten())
# can put parameter restrictions in here
return res

def poiss_err(data):
import numpy as np
return np.where(np.sqrt(H) > 0., np.sqrt(H), 2.)

# =====

H, x, y = hist_data(mixed_data, mbins, cbins)

data = H

coords = x, y
# x and y will be the projected coordinates of the data H onto the plane z = 0

# x has bins of width 0.5, with centers at -23.25, -22.75, ... , -19.25, -18.75
# y has bins of width 0.3, with centers at 0.65, 0.95, ... , 3.05, 3.35

Param = collections.namedtuple('Param', 'rsp0 rsp1 rsq0 rsq1 rsq2 rmp0 rmp1 rmq0 rmq1 rmq2 rs rm ra bsp0 bsp1 bsq0 bsq1 bsq2 bmp0 bmp1 bmq0 bmq1 bmq2 bs bm ba')
p_guess = Param(rsp0 = 0.152, rsp1 = 0.008, rsq0 = 0.044, rsq1 = -19.91, rsq2 = 0.94, rmp0 = 2.279, rmp1 = -0.037, rmq0 = -0.108, rmq1 = -19.81, rmq2 = 0.96, rs = 1., rm = -20.5, ra = 10000., bsp0 = 0.298, bsp1 = 0.014, bsq0 = -0.067, bsq1 = -19.90, bsq2 = 0.58, bmp0 = 1.790, bmp1 = -0.053, bmq0 = -0.363, bmq1 = -20.75, bmq2 = 1.12, bs = 1., bm = -20., ba = 2000.)

opt, cov, infodict, mesg, ier = spopt.leastsq(residual, p_guess, poiss_err(H), args = coords, maxfev = 100000, full_output = True)

这是我的数据,只是 bin 较少:

[[  1.00000000e+01   1.10000000e+01   2.10000000e+01   1.90000000e+01
1.70000000e+01 2.10000000e+01 2.40000000e+01 1.90000000e+01
2.80000000e+01 1.90000000e+01]
[ 1.40000000e+01 4.50000000e+01 6.00000000e+01 6.80000000e+01
1.34000000e+02 1.97000000e+02 2.23000000e+02 2.90000000e+02
3.23000000e+02 3.03000000e+02]
[ 3.00000000e+01 1.17000000e+02 3.78000000e+02 9.74000000e+02
1.71900000e+03 2.27700000e+03 2.39000000e+03 2.25500000e+03
1.85600000e+03 1.31000000e+03]
[ 1.52000000e+02 9.32000000e+02 2.89000000e+03 5.23800000e+03
6.66200000e+03 6.19100000e+03 4.54900000e+03 3.14600000e+03
2.09000000e+03 1.33800000e+03]
[ 5.39000000e+02 2.58100000e+03 6.51300000e+03 8.89900000e+03
8.52900000e+03 6.22900000e+03 3.55000000e+03 2.14300000e+03
1.19000000e+03 6.92000000e+02]
[ 1.49600000e+03 4.49200000e+03 8.77200000e+03 1.07610000e+04
9.76700000e+03 7.04900000e+03 4.23200000e+03 2.47200000e+03
1.41500000e+03 7.02000000e+02]
[ 2.31800000e+03 7.01500000e+03 1.28870000e+04 1.50840000e+04
1.35590000e+04 8.55600000e+03 4.15600000e+03 1.77100000e+03
6.57000000e+02 2.55000000e+02]
[ 1.57500000e+03 3.79300000e+03 5.20900000e+03 4.77800000e+03
3.26600000e+03 1.44700000e+03 5.31000000e+02 1.85000000e+02
9.30000000e+01 4.90000000e+01]
[ 7.01000000e+02 1.21600000e+03 1.17600000e+03 7.93000000e+02
4.79000000e+02 2.02000000e+02 8.80000000e+01 3.90000000e+01
2.30000000e+01 1.90000000e+01]
[ 2.93000000e+02 3.93000000e+02 2.90000000e+02 1.97000000e+02
1.18000000e+02 6.40000000e+01 4.10000000e+01 1.20000000e+01
1.10000000e+01 4.00000000e+00]]

非常感谢!

最佳答案

那么 leastsq 所做的就是尝试:

"Minimize the sum of squares of a set of equations" -scipy docs

正如它所说,它正在最小化一组函数,因此如果您查看参数 here,实际上不会以最简单的方式获取任何 x 或 y 数据输入。所以你可以随心所欲地做,并传递一个残差函数,但是,使用 curve_fit 为你完成它会容易得多 :) 并创建必要的方程式

对于适合你应该使用:curve_fit如果您对他们使用的通用残差没问题,这实际上是您传递给自己的函数 res = leastsq(func, p0, args=args, full_output=1, **kw) 如果您查看code here.

例如如果我在 2d 中拟合 rosenbrock 函数并猜测 y 参数:

from scipy.optimize import curve_fit
from itertools import imap
import numpy as np
# use only an even number of arguments
def rosen2d(x,a):
return (1-x)**2 + 100*(a - (x**2))**2
#generate some random data slightly off

datax = np.array([.01*x for x in range(-10,10)])
datay = 2.3
dataz = np.array(map(lambda x: rosen2d(x,datay), datax))
optimalparams, covmatrix = curve_fit(rosen2d, datax, dataz)
print 'opt:',optimalparams

在 4d 中拟合 colville 函数:

from scipy.optimize import curve_fit
import numpy as np

# 4 dimensional colville function
# definition from http://www.sfu.ca/~ssurjano/colville.html
def colville(x,x3,x4):
x1,x2 = x[:,0],x[:,1]
return 100*(x1**2 - x2)**2 + (x1-1)**2 + (x3-1)**2 + \
90*(x3**2 - x4)**2 + \
10.1*((x2 - 1)**2 + (x4 - 1)**2) + \
19.8*(x2 - 1)*(x4 - 1)
#generate some random data slightly off

datax = np.array([[x,x] for x in range(-10,10)])
#add gaussian noise
datax+= np.random.rand(*datax.shape)
#set 2 of the 4 parameters to constants
x3 = 3.5
x4 = 4.5
#calculate the function
dataz = colville(datax, x3, x4)
#fit the function
optimalparams, covmatrix = curve_fit(colville, datax, dataz)
print 'opt:',optimalparams

使用自定义残差函数:

from scipy.optimize import leastsq
import numpy as np

# 4 dimensional colville function
# definition from http://www.sfu.ca/~ssurjano/colville.html
def colville(x,x3,x4):
x1,x2 = x[:,0],x[:,1]
return 100*(x1**2 - x2)**2 + (x1-1)**2 + (x3-1)**2 + \
90*(x3**2 - x4)**2 + \
10.1*((x2 - 1)**2 + (x4 - 1)**2) + \
19.8*(x2 - 1)*(x4 - 1)
#generate some random data slightly off


datax = np.array([[x,x] for x in range(-10,10)])
#add gaussian noise
datax+= np.random.rand(*datax.shape)
#set 2 of the 4 parameters to constants
x3 = 3.5
x4 = 4.5

def residual(p, x, y):
return y - colville(x,*p)
#calculate the function
dataz = colville(datax, x3, x4)
#guess some initial parameter values
p0 = [0,0]
#calculate a minimization of the residual
optimalparams = leastsq(residual, p0, args=(datax, dataz))[0]
print 'opt:',optimalparams

编辑:您为 args 使用了位置和关键字 arg:如果您查看 docs你会看到它使用位置 3,但也可以用作关键字参数。您使用了两者,这意味着该功能与预期的一样,令人困惑。

关于python - 使用 3d 数据和参数在 Scipy 中进行曲线拟合,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/17934198/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com