- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
docs对于 scikit-learn 的 Imputation transformer 说
When axis=0, columns which only contained missing values at fit are discarded upon transform.
由于 imputer 返回一个 numpy 数组,我如何检查哪些特征在插补过程中被丢弃,或者相应地,哪些特征在插补后被保留?
这是一个简单的例子:
import pandas as pd
import numpy as np
from sklearn.preprocessing import Imputer
df = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
df['f'] = len(df3)*['NaN']
这是数据框:
>>> df
a b c d e f
0 -1.284658 0.246541 -1.120987 0.559911 -1.189870 NaN
1 0.773717 0.430597 -0.004346 -1.292080 1.993266 NaN
2 1.418761 -0.004749 -0.181932 -0.305756 -0.135870 NaN
3 0.418673 -0.376318 -0.860783 0.074135 -1.034095 NaN
4 -0.019873 0.006210 0.364384 1.029895 -0.188727 NaN
5 0.903661 0.123575 -0.556970 1.344985 -1.109806 NaN
6 -0.069168 -0.385597 0.684345 0.645920 1.159898 NaN
7 0.695782 0.030239 -0.777304 -0.037102 2.053028 NaN
8 -0.256409 0.106735 -0.729710 0.254626 1.064925 NaN
9 0.235507 -0.087767 0.626121 1.391286 0.449158 NaN
现在我创建一个 imputer imp
:
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit(df)
imputed = imp.transform(df)
这是从插补返回的 numpy 数组。
>>> imputed
array([[-1.28465763, 0.24654083, -1.12098675, 0.55991059, -1.18986998],
[ 0.77371694, 0.43059674, -0.0043461 , -1.29208032, 1.99326594],
[ 1.41876145, -0.0047488 , -0.18193164, -0.30575631, -0.13586974],
[ 0.41867326, -0.37631792, -0.86078293, 0.07413458, -1.03409532],
最佳答案
如何检查插补过程中丢弃了哪些特征?
包含所有 NaN
的列将被丢弃。您可以在不通过 df.isnull().all()
的 fit
和 transform
过程的情况下进行检查。在 True
的地方,那些是将被丢弃的“特征”。
不过,确切的答案是像这样将 verbose=1
添加到您的 imputer 中:
imp = Imputer(verbose=1)
为了让这个例子更清楚发生了什么,向 df
添加另一列包含所有 NaN
。
df.insert(2, 'g', np.nan)
df
现在看起来像这样:
a b g c d e f
0 -1.284658 0.246541 NaN -1.120987 0.559911 -1.189870 NaN
1 0.773717 0.430597 NaN -0.004346 -1.292080 1.993266 NaN
2 1.418761 -0.004749 NaN -0.181932 -0.305756 -0.135870 NaN
3 0.418673 -0.376318 NaN -0.860783 0.074135 -1.034095 NaN
4 -0.019873 0.006210 NaN 0.364384 1.029895 -0.188727 NaN
5 0.903661 0.123575 NaN -0.556970 1.344985 -1.109806 NaN
6 -0.069168 -0.385597 NaN 0.684345 0.645920 1.159898 NaN
7 0.695782 0.030239 NaN -0.777304 -0.037102 2.053028 NaN
8 -0.256409 0.106735 NaN -0.729710 0.254626 1.064925 NaN
9 0.235507 -0.087767 NaN 0.626121 1.391286 0.449158 NaN
正在运行...
imp.fit(df)
imp.transform(df)
现在输出以下“详细”消息,告诉您删除了哪些列 [2 6]
:
Warning (from warnings module):
File "C:\Python34\lib\site-packages\sklearn\preprocessing\imputation.py", line 347
"observed values: %s" % missing)
UserWarning: Deleting features without observed values: [2 6]
array([[-1.284658, 0.246541, -1.120987, 0.559911, -1.18987 ],
[ 0.773717, 0.430597, -0.004346, -1.29208 , 1.993266],
[ 1.418761, -0.004749, -0.181932, -0.305756, -0.13587 ],
[ 0.418673, -0.376318, -0.860783, 0.074135, -1.034095],
[-0.019873, 0.00621 , 0.364384, 1.029895, -0.188727],
[ 0.903661, 0.123575, -0.55697 , 1.344985, -1.109806],
[-0.069168, -0.385597, 0.684345, 0.64592 , 1.159898],
[ 0.695782, 0.030239, -0.777304, -0.037102, 2.053028],
[-0.256409, 0.106735, -0.72971 , 0.254626, 1.064925],
[ 0.235507, -0.087767, 0.626121, 1.391286, 0.449158]])
插补后保留了哪些特征?
插补后保留的列和值。
使用我之前的 df
,如果我们添加一些 NaN
到组合中:
df.loc[[1, 7, 3], ['a', 'c', 'e']] = np.nan
df
看起来像这样:
a b g c d e f
0 -1.284658 0.246541 NaN -1.120987 0.559911 -1.189870 NaN
1 NaN 0.430597 NaN NaN -1.292080 NaN NaN
2 1.418761 -0.004749 NaN -0.181932 -0.305756 -0.135870 NaN
3 NaN -0.376318 NaN NaN 0.074135 NaN NaN
4 -0.019873 0.006210 NaN 0.364384 1.029895 -0.188727 NaN
5 0.903661 0.123575 NaN -0.556970 1.344985 -1.109806 NaN
6 -0.069168 -0.385597 NaN 0.684345 0.645920 1.159898 NaN
7 NaN 0.030239 NaN NaN -0.037102 NaN NaN
8 -0.256409 0.106735 NaN -0.729710 0.254626 1.064925 NaN
9 0.235507 -0.087767 NaN 0.626121 1.391286 0.449158 NaN
重要的是要了解您使用的是什么插补策略。 Imputer
的默认值是mean。这意味着它将用给定列的平均值替换 NaN
值。
为了证明这一点,首先检查每列的平均值:
>>> df.mean()
a 0.132546
b 0.008947
g NaN
c -0.130678
d 0.366582
e 0.007101
f NaN
dtype: float64
然后您可以进行拟合和转换,并查看转换后的估算数据中是否有任何值在 imp.statistics_
超参数中。
imp = Imputer(verbose=1)
imp.fit(df)
imp.transform(df)
返回以下内容 - 同样,需要注意的关键是 NaN
值已替换为给定列的 mean
。例如,无论您在第一列中看到 0.13254586
,您都会注意到它们出现在第 1、3 和 7 行(以前是 NaN
):
Warning (from warnings module):
File "C:\Python34\lib\site-packages\sklearn\preprocessing\imputation.py", line 347
"observed values: %s" % missing)
UserWarning: Deleting features without observed values: [2 6]
array([[-1.284658 , 0.246541 , -1.120987 , 0.559911 , -1.18987 ],
[ 0.13254586, 0.430597 , -0.13067843, -1.29208 , 0.00710114],
[ 1.418761 , -0.004749 , -0.181932 , -0.305756 , -0.13587 ],
[ 0.13254586, -0.376318 , -0.13067843, 0.074135 , 0.00710114],
[-0.019873 , 0.00621 , 0.364384 , 1.029895 , -0.188727 ],
[ 0.903661 , 0.123575 , -0.55697 , 1.344985 , -1.109806 ],
[-0.069168 , -0.385597 , 0.684345 , 0.64592 , 1.159898 ],
[ 0.13254586, 0.030239 , -0.13067843, -0.037102 , 0.00710114],
[-0.256409 , 0.106735 , -0.72971 , 0.254626 , 1.064925 ],
[ 0.235507 , -0.087767 , 0.626121 , 1.391286 , 0.449158 ]])
如果您想进行 bool 比较以查看估算了哪些值,您可以执行以下操作(不是万无一失,但最可靠的方法):
np.reshape(np.in1d(imp.transform(df), imp.statistics_), imp.transform(df).shape)
array([[False, False, False, False, False],
[ True, False, True, False, True],
[False, False, False, False, False],
[ True, False, True, False, True],
[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
[ True, False, True, False, True],
[False, False, False, False, False],
[False, False, False, False, False]], dtype=bool)
关于python - 检查 scikitlearn imputer 丢弃了哪些特征,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38277014/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!