gpt4 book ai didi

python - 不正确的 : usage of hyperopt with tensorflow

转载 作者:行者123 更新时间:2023-11-28 21:04:42 26 4
gpt4 key购买 nike

在下面的代码中,我修改了 tensorflow 教程(官方)中的 Deep MNIST 示例。

修改——将权重衰减添加到损失函数中,同时也修改了权重。 (如果不正确,请告诉我)。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

from hyperopt import STATUS_OK, STATUS_FAIL

Flags2=None

def build_and_optimize(hp_space):
global Flags2
Flags2 = {}
Flags2['dp'] = hp_space['dropout_global']
Flags2['wd'] = hp_space['wd']

res = main(Flags2)

results = {
'loss': res,
'status': STATUS_OK
}
return results

def deepnn(x):
"""deepnn builds the graph for a deep net for classifying digits.
args:
x: an input tensor with the dimensions (N_examples, 784), where 784 is the number of piexs in a standard MNIST image.

returns:
a tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values equal to the logits of classifying the digit into one of classes (the digits 0-9). keep_prob is a scalar placeholder for the probability of dropout.
"""

# reshape to use within a convolutional neural net
# last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for RGB, 4 for RGBA, etc.
x_image = tf.reshape(x, [-1, 28, 28, 1])
wd = tf.placeholder(tf.float32)

# first convolutional layer - maps one grayscale image to 32 feature maps
W_conv1 = weight_variable([5, 5, 1, 32], wd)
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

# pooling layer - downsamples by 2X
h_pool1 = max_pool_2X2(h_conv1)

# second convolutional layer --maps 32 feature maps to 64
W_conv2 = weight_variable([5, 5, 32, 64], wd)
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

# second pooling layer - downsamples by 2X
h_pool2 = max_pool_2X2(h_conv2)

# fully connected layer 1 -- after 2 round of downsampleing, our 28x28 image
# is done to 7x7x64 feature maps --maps this to 1025 features.
W_fc1 = weight_variable([7*7*64, 1024], wd)
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# dropout - controls the complexity of the model, prevents co-adaptation of features.
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# map the 1024 features to 10 classes, one for each digit
W_fc2 = weight_variable([1024, 10], wd)
b_fc2 = bias_variable([10])

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
return y_conv, keep_prob, wd

def conv2d(x, W):
"""conv2d returns a 2d convolution layer with full stride."""
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2X2(x):
"""max_pool_2x2 downsamples a feature map by 2X."""
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')

def weight_variable(shape, wd = None):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
# weight decay
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(initial), wd, name = 'weight_loss')
tf.add_to_collection('losses', weight_decay)
return tf.Variable(initial)

def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)


def main(_):
global Flags2
if Flags2 is None:
Flags2 = {}
if 'keep_prob' not in Flags2:
Flags2 = {}
Flags2['dp'] = 1.0
Flags2['wd'] = 0.0

print(Flags2)

# import data
mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)

# create the model
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])

# build the graph for the deep net
y_conv, keep_prob, wd = deepnn(x)

cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
# adding weight decay
tf.add_to_collection('losses', cross_entropy)
total_loss = tf.add_n(tf.get_collection('losses'), name='total_loss')

train_step = tf.train.AdamOptimizer(1e-4).minimize(total_loss)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


with tf.Session() as sess:
sess.run(tf.global_variables_initializer())


for i in range(1000):
batch =mnist.train.next_batch(200)

if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[0], y_:batch[1], keep_prob: Flags2['dp'], wd: Flags2['wd']})
print('step %d, training accuracy %g' %(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: Flags2['dp'], wd: Flags2['wd']})

test_accuracy = accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0, wd: Flags2['wd']})
print('test accuracy %g' % test_accuracy)

return test_accuracy

if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str,
default='/tmp/tensorflow/mnist/input_data',
help='directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

Hyperopt 用于调整超参数(权重衰减因子和丢失概率)。

from hyperopt import fmin, tpe, hp, Trials

import pickle
import traceback

from my_mnist_convnet import build_and_optimize

space = {
'dropout_global': hp.uniform('conv_dropout_prob', 0.4, 0.6),
'wd': hp.uniform('wd', 0.0, 0.01)
}

def run_a_trail():
"""Run one TPE meta optimisation step and save its results."""
max_evals = nb_evals = 3

print("Attempt to resume a past training if it exists:")

try:
trials = pickle.load(open("results.pkl", "rb"))
print("Found saved Trials! Loading...")
max_evals = len(trials.trials) + nb_evals
print("Rerunning from {} trials to add another one.".format(
len(trials.trials)))
except:
trials = Trials()
print("Starting from scratch: new trials.")

best = fmin(
build_and_optimize,
space,
algo=tpe.suggest,
trials=trials,
max_evals=max_evals
)
pickle.dump(trials, open("results.pkl", "wb"))

print(best)

return

def plot_base_and_best_models():
return

if __name__ == "__main__":
"""plot the model and run the optimisation forever (and save results)."""
run_a_trail()

当使用 hyperopt 代码时,代码仅在一次 TPE 运行中运行良好,但是,如果跟踪的数量增加,则会报告以下错误。

self._traceback = _extract_stack()

InvalidArgumentError (see above for traceback): Shape [-1,784] has negative dimensions
[[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[?,784], _device="/job:localhost/replica:0/task:0/gpu:0"]()]]

最佳答案

这个问题很可能会出现,因为每次调用 build_and_optimize() 都会将节点添加到同一个 TensorFlow 图,并且 tf.train.AdamOptimizer 会尝试优化除了当前图表之外,所有先前图表中的变量。要解决此问题,请修改 build_and_optimize() 以便它在不同的 TensorFlow 图中运行 main(),使用以下更改:

def build_and_optimize(hp_space):
global Flags2
Flags2 = {}
Flags2['dp'] = hp_space['dropout_global']
Flags2['wd'] = hp_space['wd']

# Create a new, empty graph for each trial to avoid interference from
# previous trials.
with tf.Graph().as_default():
res = main(Flags2)

results = {
'loss': res,
'status': STATUS_OK
}
return results

关于python - 不正确的 : usage of hyperopt with tensorflow,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44936162/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com