- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有两个数据集如下:
ds1:作为 2d numpy 数组的 DEM(数字高程模型)文件,
ds2:显示其中有一些多余水分的区域(像素)。
我有一个 while 循环,它负责根据其 8 个相邻像素及其自身的高度散布(和更改)每个像素中的多余体积,直到每个像素中的多余体积小于某个值 d = 0.05。因此,在每次迭代中,我需要在 ds2 中找到超出体积大于 0.05 的像素索引,如果没有剩余像素,则退出 while 循环:
exit_code == "No"
while exit_code == "No":
index_of_pixels_with_excess_volume = numpy.argwhere(ds2> 0.05) # find location of pixels where excess volume is greater than 0.05
if not index_of_pixels_with_excess_volume.size:
exit_code = "Yes"
else:
for pixel in index_of_pixels_with_excess_volume:
# spread those excess volumes to the neighbours and
# change the values of ds2
问题是 numpy.argwhere(ds2> 0.05) 非常慢。我正在寻找更快的替代解决方案。
最佳答案
制作一个二维数组示例:
In [584]: arr = np.random.rand(1000,1000)
找出其中的一小部分:
In [587]: np.where(arr>.999)
Out[587]:
(array([ 1, 1, 1, ..., 997, 999, 999], dtype=int32),
array([273, 471, 584, ..., 745, 310, 679], dtype=int32))
In [588]: _[0].shape
Out[588]: (1034,)
时间 argwhere
的各个部分:
In [589]: timeit arr>.999
2.65 ms ± 116 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [590]: timeit np.count_nonzero(arr>.999)
2.79 ms ± 26 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [591]: timeit np.nonzero(arr>.999)
6 ms ± 10 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [592]: timeit np.argwhere(arr>.999)
6.06 ms ± 58.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
所以大约 1/3 的时间花在了 测试上,剩下的时间花在寻找
True
元素上。将 where
元组转换为 2 列数组的速度很快。
现在如果目标只是找到第一个 >
值,argmax
很快。
In [593]: np.argmax(arr>.999)
Out[593]: 1273 # can unravel this to (1,273)
In [594]: timeit np.argmax(arr>.999)
2.76 ms ± 143 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
argmax
短路,因此实际运行时间会随着找到第一个值而变化。
flatnonzero
比 where
更快:
In [595]: np.flatnonzero(arr>.999)
Out[595]: array([ 1273, 1471, 1584, ..., 997745, 999310, 999679], dtype=int32)
In [596]: timeit np.flatnonzero(arr>.999)
3.05 ms ± 26.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [599]: np.unravel_index(np.flatnonzero(arr>.999),arr.shape)
Out[599]:
(array([ 1, 1, 1, ..., 997, 999, 999], dtype=int32),
array([273, 471, 584, ..., 745, 310, 679], dtype=int32))
In [600]: timeit np.unravel_index(np.flatnonzero(arr>.999),arr.shape)
3.05 ms ± 3.58 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [601]: timeit np.transpose(np.unravel_index(np.flatnonzero(arr>.999),arr.shap
...: e))
3.1 ms ± 5.86 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
这与 np.argwhere(arr>.999)
相同。
有趣的是,flatnonzero
方法将时间缩短了一半!没想到会有这么大的进步。
比较迭代速度:
从 argwhere
对二维数组进行迭代:
In [607]: pixels = np.argwhere(arr>.999)
In [608]: timeit [pixel for pixel in pixels]
347 µs ± 5.29 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
使用 zip(*)
转置从 where
迭代元组:
In [609]: idx = np.where(arr>.999)
In [610]: timeit [pixel for pixel in zip(*idx)]
256 µs ± 147 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
在数组上迭代通常比在列表上迭代要慢一点,或者在这种情况下是压缩数组。
In [611]: [pixel for pixel in pixels][:5]
Out[611]:
[array([ 1, 273], dtype=int32),
array([ 1, 471], dtype=int32),
array([ 1, 584], dtype=int32),
array([ 1, 826], dtype=int32),
array([ 2, 169], dtype=int32)]
In [612]: [pixel for pixel in zip(*idx)][:5]
Out[612]: [(1, 273), (1, 471), (1, 584), (1, 826), (2, 169)]
一个是数组列表,另一个是元组列表。但是将这些元组(单独)转换为数组很慢:
In [614]: timeit [np.array(pixel) for pixel in zip(*idx)]
2.26 ms ± 4.94 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
在平面非零数组上迭代更快
In [617]: fdx = np.flatnonzero(arr>.999)
In [618]: fdx[:5]
Out[618]: array([1273, 1471, 1584, 1826, 2169], dtype=int32)
In [619]: timeit [i for i in fdx]
112 µs ± 23.5 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
但是对这些值单独应用unravel
需要时间。
def foo(idx): # a simplified unravel
return idx//1000, idx%1000
In [628]: timeit [foo(i) for i in fdx]
1.12 ms ± 1.02 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
将这 1 毫秒添加到 3 毫秒以生成 fdx
,此 flatnonzero
可能仍会领先。但在最好的情况下,我们谈论的是 2 倍的速度提升。
关于python - 替代 numpy.argwhere 以加速 python 中的循环,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47068017/
我是 PHP 新手。我一直在脚本中使用 for 循环、while 循环、foreach 循环。我想知道 哪个性能更好? 选择循环的标准是什么? 当我们在另一个循环中循环时应该使用哪个? 我一直想知道要
我在高中的编程课上,我的作业是制作一个基本的小计和顶级计算器,但我在一家餐馆工作,所以制作一个只能让你在一种食物中读到。因此,我尝试让它能够接收多种食品并将它们添加到一个价格变量中。抱歉,如果某些代码
这是我正在学习的一本教科书。 var ingredients = ["eggs", "milk", "flour", "sugar", "baking soda", "baking powder",
我正在从字符串中提取数字并将其传递给函数。我想给它加 1,然后返回字符串,同时保留前导零。我可以使用 while 循环来完成此操作,但不能使用 for 循环。 for 循环只是跳过零。 var add
编辑:我已经在程序的输出中进行了编辑。 该程序要求估计给定值 mu。用户给出一个值 mu,同时还提供了四个不等于 1 的不同数字(称为 w、x、y、z)。然后,程序尝试使用 de Jaeger 公式找
我正在编写一个算法,该算法对一个整数数组从末尾到开头执行一个大循环,其中包含一个 if 条件。第一次条件为假时,循环可以终止。 因此,对于 for 循环,如果条件为假,它会继续迭代并进行简单的变量更改
现在我已经习惯了在内存非常有限的情况下进行编程,但我没有答案的一个问题是:哪个内存效率更高;- for(;;) 或 while() ?还是它们可以平等互换?如果有的话,还要对效率问题发表评论! 最佳答
这个问题已经有答案了: How do I compare strings in Java? (23 个回答) 已关闭 8 年前。 我正在尝试创建一个小程序,我可以在其中读取该程序的单词。如果单词有 6
这个问题在这里已经有了答案: python : list index out of range error while iteratively popping elements (12 个答案) 关
我正在尝试向用户请求 4 到 10 之间的整数。如果他们回答超出该范围,它将进入循环。当用户第一次正确输入数字时,它不会中断并继续执行 else 语句。如果用户在 else 语句中正确输入数字,它将正
我尝试创建一个带有嵌套 foreach 循环的列表。第一个循环是循环一些数字,第二个循环是循环日期。我想给一个日期写一个数字。所以还有另一个功能来检查它。但结果是数字多次写入日期。 Out 是这样的:
我想要做的事情是使用循环创建一个数组,然后在另一个类中调用该数组,这不会做,也可能永远不会做。解决这个问题最好的方法是什么?我已经寻找了所有解决方案,但它们无法编译。感谢您的帮助。 import ja
我尝试创建一个带有嵌套 foreach 循环的列表。第一个循环是循环一些数字,第二个循环是循环日期。我想给一个日期写一个数字。所以还有另一个功能来检查它。但结果是数字多次写入日期。 Out 是这样的:
我正在模拟一家快餐店三个多小时。这三个小时分为 18 个间隔,每个间隔 600 秒。每个间隔都会输出有关这 600 秒内发生的情况的统计信息。 我原来的结构是这样的: int i; for (i=0;
这个问题已经有答案了: IE8 for...in enumerator (3 个回答) How do I check if an object has a specific property in J
哪个对性能更好?这可能与其他编程语言不一致,所以如果它们不同,或者如果你能用你对特定语言的知识回答我的问题,请解释。 我将使用 c++ 作为示例,但我想知道它在 java、c 或任何其他主流语言中的工
这个问题不太可能帮助任何 future 的访问者;它只与一个小的地理区域、一个特定的时间点或一个非常狭窄的情况有关,这些情况并不普遍适用于互联网的全局受众。为了帮助使这个问题更广泛地适用,visit
我是 C 编程和编写代码的新手,以确定 M 测试用例的质因数分解。如果我一次只扫描一次,该功能本身就可以工作,但是当我尝试执行 M 次时却惨遭失败。 我不知道为什么 scanf() 循环有问题。 in
这个问题已经有答案了: JavaScript by reference vs. by value [duplicate] (4 个回答) 已关闭 3 年前。 我在使用 TSlint 时遇到问题,并且理
我尝试在下面的代码中添加 foreach 或 for 循环,以便为 Charts.js 创建多个数据集。这将允许我在此折线图上创建多条线。 我有一个 PHP 对象,我可以对其进行编码以稍后填充变量,但
我是一名优秀的程序员,十分优秀!