- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我很困惑,为什么没有交叉验证的随机森林分类模型的平均准确度得分为 0.996,而具有 5 折交叉验证的模型的平均准确度得分为 0.687。
有 275,956 个样本。 0级=217891,1级=6073,2级=51992
我正在尝试预测“TARGET”列,它是 3 个类 [0,1,2]:
data.head()
bottom_temperature bottom_humidity top_temperature top_humidity external_temperature external_humidity weight TARGET
26.35 42.94 27.15 40.43 27.19 0.0 0.0 1
36.39 82.40 33.39 49.08 29.06 0.0 0.0 1
36.32 73.74 33.84 42.41 21.25 0.0 0.0 1
根据文档,数据分为训练和测试
# link to docs http://scikit-learn.org/stable/modules/cross_validation.html
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn import svm
# Create a list of the feature column's names
features = data.columns[:7]
# View features
features
Out[]: Index([u'bottom_temperature', u'bottom_humidity', u'top_temperature',
u'top_humidity', u'external_temperature', u'external_humidity',
u'weight'],
dtype='object')
#split data
X_train, X_test, y_train, y_test = train_test_split(data[features], data.TARGET, test_size=0.4, random_state=0)
#build model
clf = RandomForestClassifier(n_jobs=2, random_state=0)
clf.fit(X_train, y_train)
#predict
preds = clf.predict(X_test)
#accuracy of predictions
accuracy = accuracy_score(y_test, preds)
print('Mean accuracy score:', accuracy)
('Mean accuracy score:', 0.96607267423425713)
#verify - its the same
clf.score(X_test, y_test)
0.96607267423425713
关于交叉验证:
from sklearn.model_selection import cross_val_score
scores = cross_val_score(clf, data[features], data.TARGET, cv=5)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
Accuracy: 0.69 (+/- 0.07)
要低得多!
并验证第二种方式:
#predict with CV
# http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html#sklearn.model_selection.cross_val_predict
from sklearn.model_selection import cross_val_predict
predicted = cross_val_predict(clf, data[features], data.queen3, cv=5)
metrics.accuracy_score(data.queen3, predicted)
Out[]: 0.68741031178883594
根据我的理解,交叉验证不应将预测的准确性降低这个数量,而是提高模型的预测,因为模型已经看到所有数据的“更好”表示。
最佳答案
通常我会同意 Vivek 并告诉你相信你的交叉验证。
但是,某种程度的 CV 是随机森林中固有的,因为每棵树都是从引导样本中生长出来的,因此您不应期望在运行交叉验证时会看到如此大的准确性降低。我怀疑您的问题是由于数据排序中的某种时间或位置依赖性造成的。
当您使用 train_test_split
时,数据是从数据集中随机抽取的,因此您的所有 80 个环境都可能出现在您的训练和测试数据集中。但是,当您使用 CV 的默认选项拆分时,我相信每个折叠都是按顺序绘制的,因此您的每个环境都不会出现在每个折叠中(假设您的数据按环境排序)。这会导致较低的准确性,因为您是在使用来自另一个环境的数据来预测一个环境。
简单的解决方案是设置cv=ms.StratifiedKFold(n_splits=5, shuffle=True)
。
在使用串联数据集之前,我曾多次遇到过这个问题,而且肯定有数百人已经意识到或没有意识到问题所在。默认行为的想法是维护时间序列中的顺序(根据我在 GitHub 讨论中看到的内容)。
关于python - 为什么交叉验证 RF 分类的性能比没有交叉验证的差?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49544981/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!