- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我们训练了一个包含两列的 XGB 模型。概括有文。 Security_Flag 有 0 和 1。测试和培训效果很好。现在我们要添加一个新句子(不包含在原始文件中)。只要我们只使用原始文件中的已知单词,它仍然有效。但如果我们使用一个完整的新词,我们会收到一条错误消息。
一切正常——只有最后一行代码抛出错误
请指教谢谢
我们尝试以不同的方式输入新句子。
import matplotlib.pyplot as plt
from xgboost import plot_tree
import xgboost as xgb
import pandas as pd
import numpy as np
import pickle
import string
import nltk
import csv
import os
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.datasets import dump_svmlight_file
from sklearn.metrics import precision_score
from sklearn.externals import joblib
from sklearn.metrics import confusion_matrix
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
def pp(text):
# tokenize into words
# remove stopwords
stop = stopwords.words('german')
tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]
tokens = [token for token in tokens if token not in stop]
# remove words less than three letters
tokens = [word for word in tokens if len(word) >= 3]
# lower capitalization
tokens = [word.lower() for word in tokens]
# lemmatize
lmtzr = nltk.WordNetLemmatizer()
tokens = [lmtzr.lemmatize(word) for word in tokens]
preprocessed_text= ' '.join(tokens)
return preprocessed_text
df = pd.read_csv("file03.csv", sep=",", usecols=["Security_Flag","Summary"])
y = df["Security_Flag"]
# from dataframe to array for train test splitting
y = y.values
Z = []
for row in df['Summary']:
l = pp(row)
Z.append(l)
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(Z)
X = X.toarray()
#X = pd.DataFrame(data=X[0:,0:])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=41)
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
param = {
'max_depth': 3, # the maximum depth of each tree
'eta': 0.3, # the training step for each iteration
'silent': 1, # logging mode - quiet
'objective': 'multi:softprob', # error evaluation for multiclass training
# 'objective': 'binary:logistic', # error evaluation for multiclass training
'num_class': 2} # the number of classes that exist in this datset
num_round = 20 # the number of training iterations
bst = xgb.train(param, dtrain, num_round)
preds = bst.predict(dtest)
best_preds = np.asarray([np.argmax(line) for line in preds])
stest = xgb.DMatrix([X_test[0]])
spred = bst.predict(stest)
print(confusion_matrix(y_test, best_preds))
while True:
ts = input("Enter a sentence: ")
ts = pp(ts)
Z.append(ts)
Y = vectorizer.fit_transform(Z)
Y = Y.toarray()
test = xgb.DMatrix([Y[-1]])
spred = bst.predict(test)
“预期结果将是 1 或 0。输出是一条错误消息。”训练数据没有以下字段:f1354、f1355、f1352、f1353
最佳答案
您必须尝试以下操作:
Y = vectorizer.transform(Z)
因为您已经在开始时执行了 fit_transform()。
关于python - 如何用一个新句子测试 XGB 模型?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56769036/
假设我有一个数据集,每行包含一个句子,该句子来自一个非常大的调查(德语和法语)中的一个开放式问题。大多数句子(答案)是合乎逻辑的;即有意义的单词组合。但是,也有一些粗心的受访者只是简单地填写了各种不合
我的 MySQL 数据库中有一个表,其结构如下: CREATE TABLE `papers` ( `id` int(11) NOT NULL AUTO_INCREMENT, `title` varch
在新的 Edge 浏览器(基于 chromium)中,有一个文本到语音的选项,在阅读页面时它会突出显示正在阅读的句子和单词,就像这样 - 过去我有一个简单的 Windows TTS 应用程序,我通过将
我有一本书的图像文件。我正在编写一个 Web 应用程序,用于加载书籍并一次显示一页。我想知道如何在页面中选择一个句子并显示一条消息。据我所知,它必须具有图像坐标。 请参阅http://epaper.d
我使用的 GPS 输出多个 NMEA 语句,可用于定位数据。 (GPGGA 和 GPRMC)。有什么理由我应该使用一个而不是另一个吗?我应该检查它们并比较数据吗?我可以随便挑一个使用吗? 在这一点上,
我想使用TinyGPS++在 Arduino 上解析 NMEA 数据并在 OLED 显示屏上显示信息。但是,NMEA 数据将通过 USB 接收,而不是使用软件串行和 TX/RX 引脚。 我按照 Tin
我需要删除其中的所有空格。 例如:这是我的代码O/P:Thisismycode 这是我到目前为止的代码。 import java.util.Scanner; public class nospace{
我对 python 很陌生,我不知道如何解决以下问题: 我有两个数据框,我想使用某种 VLOOKUP 函数来将句子与特定关键字相匹配。在下面的示例中,(df1) 3e 句子应与“banana”(df2
这个问题已经有答案了: How slicing in Python works (38 个回答) Python list slice syntax used for no obvious reason
我想在我的表格作者的句子列中找到以 # 开头的单词。我不知道我在寻找什么词,因为我只知道它以 # 开头。 表:作者(姓名,句子) 作者 |句子 艾伯特 |我#want to be #discussin
句子
关闭。这个问题需要details or clarity .它目前不接受答案。 想改进这个问题吗? 通过 editing this post 添加细节并澄清问题. 关闭 9 年前。 Improve
我目前正在经历免费代码营的第一个 JS 挑战。 我在标题为“句子首字母大写”的挑战中遇到了问题。在这个挑战中,我需要编写一个函数,将给定字符串中单词的每个第一个字母大写,并将所有其他字母小写。 Her
假设我有一个文本,看起来像这样: Some sentence in which a fox jumps over some fence. Another sentence in which a
我是 C++ 的初学者,我想了解有关字符的更多信息,但我遇到了问题。我试图制作一个程序,它复制一个句子并在空格 (' ') 之间添加一个新行 ('\n'),就像一个单词一个单词地分开一个句子. int
我需要将一个句子(例如“Hello world”)复制到一个字符串列表中,意思是复制到一个字符数组中,其中每 2 个单词由 '\0' 分隔。请注意,单词被定义为一行中没有空格的任意数量的字符。 因此,
我有这样一个字符串, my_str ='·in this match, dated may 1, 2013 (the "the match") is between brooklyn centenni
我在列表中有一堆句子,我想使用 nltk 库来阻止它。我可以一次提取一个句子,但是我在从列表中提取句子并将它们重新组合在一起时遇到了问题。我缺少一个步骤吗? nltk 库很新。谢谢! import n
我有一个词和文本。我必须找到所有包含该词的提案。你有什么想法吗? piblic List GetSnetences(string word) { // search all proposals
我正在通过 doc2vec 模型使用 gensim 库在 Python 中构建 NLP 聊天应用程序。我有硬编码的文档并给出了一组训练示例,我通过抛出用户问题来测试模型,然后第一步找到最相似的文档。在
我有以下代码,每 10 个单词拆分一行。 #!/bin/bash while read line do counter=1; for word in $line do
我是一名优秀的程序员,十分优秀!