- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想按如下方式执行“交叉差异”:
cross_diff ( [a,b], [c,d] ) = [ [ a - c, a - d], [ b - c, b - d] ]
我有一个在 python 中执行此操作的例程,如下所示:
def crossdiff(a,b):
c = []
for a1 in range(len(a)):
for b1 in range(len(b)):
c.append (a[a1]-b[b1])
x = numpy.array(c)
x.reshape(len(a),len(b))
return x
问题是我必须创建一个 python 数组并将结果填充到其中,然后再转换回一个 numpy 数组。我希望能够采用 numpy 向量 a 和 b 并得到一个包含所有差异的 numpy 数组 c,因为上面代码的性能对于大向量大小来说很差。
是否可以将上述计算作为“纯”numpy 操作来执行?
编辑测试结果:
我通过 Python 分析器运行了此线程中列出的所有四个实现以进行比较。我不得不在工作站上运行它们,因为初始实现使用 ~4GB RAM 和 10k 元素。
import numpy
import cProfile
def cross_diff(A, B):
return A[:,None] - B[None,:]
def crossdiff2 (a,b):
ap = numpy.tile (a, (numpy.shape(b)[0],1))
bp = numpy.tile (b, (numpy.shape(a)[0],1))
return ap - bp.transpose()
def crossdiff(a,b):
c = []
for a1 in range(len(a)):
for b1 in range(len(b)):
c.append (a[a1]-b[b1])
x = numpy.array(c)
x.reshape(len(a),len(b))
return x
a = numpy.array(range(10000))
b = numpy.array(range(10000))
cProfile.run('crossdiff (a,b)')
cProfile.run('crossdiff2 (a,b)')
cProfile.run('cross_diff (a,b)')
cProfile.run('numpy.subtract.outer (a,b)')
结果: 原始 python 是 74.147 秒,我的版本是 1.656 秒,第 3 次实现 0.296 和 4 次 0.288。
最佳答案
尝试:
import numpy as np
np.array([a,b])[:,None] - np.array([c,d,e])[None,:]
一点解释:索引中的 None
会根据需要扩展维度。所以,实际上计算将是:
a a a c d e a-c a-d a-e
- =
b b b c d e b-c b-d b-e
非常有用,索引中的 None
。
再举一个例子:
import numpy as np
def cross_diff(A, B):
return A[:,None] - B[None,:]
vec_a = np.array([1,2,3,4])
vec_b = np.array([3,2,1])
print cross_diff(vec_a, vec_b)
关于python - 在 numpy 中执行交叉差异,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24537025/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!