- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
对于方阵,可以得到SVD
X= USV'
分解,通过简单地使用 numpy.linalg.svd
u,s,vh = numpy.linalg.svd(X)
例程或 numpy.linalg.eigh,计算 Hermitian 矩阵 X'X 和 XX' 上的 eig 分解
他们使用相同的算法吗?调用相同的 Lapack 例程?
在速度方面有什么区别吗?和稳定性?
最佳答案
的确,numpy.linalg.svd
和numpy.linalg.eigh
调用的不是同一个Lapack例程。一方面,numpy.linalg.eigh
引用 LAPACK 的 dsyevd()
而 numpy.linalg.svd
使用 LAPACK 的 dgesdd()
。
这些例程之间的共同点是使用 Cuppen 的分而治之算法,该算法首先设计用于解决三对角特征值问题。例如,dsyevd()
仅在需要特征向量时才处理 Hermitian 矩阵并执行以下步骤:
使用 DSYTRD() 将矩阵化简为三对角形式
通过 DSTEDC() 使用分而治之算法计算三对角矩阵的特征向量
使用 DORMTR() 应用 DSYTRD() 报告的 Householder 反射。
相反,要计算 SVD,dgesdd()
执行以下步骤,在 job==A 的情况下(需要 U 和 VT):
dgebrd()
将 A 双对角化DBDSDC()
dgebrd()
返回的矩阵 P 和 Q 恢复双对角化,应用 dormbr()
两次,一次用于 U,一次用于 V虽然 LAPACK 执行的实际操作非常不同,但策略在全局范围内是相似的。这可能源于这样一个事实,即计算一般矩阵 A 的 SVD 类似于执行对称矩阵 A^T.A 的特征分解。
关于 lapack 分治 SVD 的准确性和性能,请参阅 This survey of SVD methods :
关于对称特征值问题,复杂度为 4/3n^3(但通常证明比这更好),内存占用约为 2n^2 加上矩阵的大小。因此,最好的选择可能是numpy.linalg.eigh
。如果您的矩阵是对称的。
可以使用以下代码计算特定矩阵的实际复杂度:
import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit
# see https://stackoverflow.com/questions/41109122/fitting-a-curve-to-a-power-law-distribution-with-curve-fit-does-not-work
def func_powerlaw(x, m, c):
return np.log(np.abs( x**m * c))
import time
start = time.time()
print("hello")
end = time.time()
print(end - start)
timeev=[]
timesvd=[]
size=[]
for n in range(10,600):
print n
size.append(n)
A=np.zeros((n,n))
#populate A, 1D diffusion.
for j in range(n):
A[j,j]=2.
if j>0:
A[j-1,j]=-1.
if j<n-1:
A[j+1,j]=-1.
#EIG
Aev=A.copy()
start = time.time()
w,v=np.linalg.eigh(Aev,'L')
end = time.time()
timeev.append(end-start)
Asvd=A.copy()
start = time.time()
u,s,vh=np.linalg.svd(Asvd)
end = time.time()
timesvd.append(end-start)
poptev, pcov = curve_fit(func_powerlaw, size[len(size)/2:], np.log(timeev[len(size)/2:]),p0=[2.1,1e-7],maxfev = 8000)
print poptev
poptsvd, pcov = curve_fit(func_powerlaw, size[len(size)/2:], np.log(timesvd[len(size)/2:]),p0=[2.1,1e-7],maxfev = 8000)
print poptsvd
plt.figure()
fig, ax = plt.subplots()
plt.plot(size,timeev,label="eigh")
plt.plot(size,[np.exp(func_powerlaw(x, poptev[0], poptev[1])) for x in size],label="eigh-adjusted complexity: "+str(poptev[0]))
plt.plot(size,timesvd,label="svd")
plt.plot(size,[np.exp(func_powerlaw(x, poptsvd[0], poptsvd[1])) for x in size],label="svd-adjusted complexity: "+str(poptsvd[0]))
ax.set_xlabel('n')
ax.set_ylabel('time, s')
#plt.legend(loc="upper left")
ax.legend(loc="lower right")
ax.set_yscale("log", nonposy='clip')
fig.tight_layout()
plt.savefig('eigh.jpg')
plt.show()
对于这样的一维扩散矩阵,eigh 优于 svd,但实际复杂度相似,略低于 n^3,类似于 n^2.5。
也可以执行准确性检查。
关于python - numpy.linalg.eigh 与 numpy.linalg.svd 相比如何?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50358310/
SciPy 和 Numpy 都内置了奇异值分解 (SVD) 函数。命令基本上是 scipy.linalg.svd 和 numpy.linalg.svd。这两者有什么区别?它们中的任何一个都比另一个更好
numpy.linalg.svd 函数给出输入矩阵的完整 svd。但是我只想要第一个奇异向量。 我想知道在 numpy 中是否有任何函数用于那个或 python 中的任何其他库? 最佳答案 一种可能是
代码: import numpy from matplotlib.mlab import PCA file_name = "store1_pca_matrix.txt" ori_data = nump
我在学习SVD通过关注这个 MIT course . 矩阵构造为 C = np.matrix([[5,5],[-1,7]]) C matrix([[ 5, 5], [-1, 7]]
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 9
我想计算 SVD ,但我没有找到合适的 java 库。现在,我在 hashmap 中存储了数据,因为矩阵不适合内存,因为大小约为 400 000 X 10 000 并且大多数为 0。我尝试了 MTJ、
运行以下代码: from sklearn.decomposition import TruncatedSVD import numpy as np X = np.matrix('1 2 3 4 5;
给定一个实数矩阵 A 使得: A 是对称的 所有非对角线项都是已知且正的 所有对角线项都缺失 排名k 我想找到 A 的最佳可能完成,称为 Ac,这样(大约)rank(Ac)=k。 矩阵 A 可能很大(
我正在寻找一个执行维基百科中描述的奇异值分解的 Java 库:从矩阵 A (m X n) 得到 A = U*S*V' 其中 U 是 m x m,S 是 m x n,V 是n x n. 谁能帮帮我? 请
我正在尝试学习用于图像处理的 SVD...例如压缩。 我的方法:使用 ImageIO 获取图像作为 BufferedImage...获取 RGB 值并使用它们获取等效的灰度值(在 0-255 范围内)
我必须在 Matlab 中使用 SVD 来获得数据的简化版本。我读到函数 svds(X,k) 执行 SVD 并返回前 k 个特征值和特征向量。如果必须规范化数据,文档中没有提及。对于归一化,我指的是减
我已经使用 SVD 找到了两组点之间的旋转矩阵。我知道 R = Transpose(U) * V 但我不明白 U 和 V 代表什么以及为什么这种乘法会产生旋转矩阵。 最佳答案 由于您的问题是理论性的并
我正在尝试在名为“LSA 简介”的论文中复制一个示例: An introduction to LSA 在示例中,它们具有以下术语-文档矩阵: 然后他们应用 SVD 并得到以下结果: 试图复制这一点,我
我正在使用带有 R 的 SVD 包,我能够通过将最低奇异值替换为 0 来降低矩阵的维数。但是当我重新组合矩阵时,我仍然拥有相同数量的特征,我找不到如何有效地删除源矩阵中最无用的特征,以减少其列数。 例
我想编写一个函数,它使用 SVD 分解来求解方程组 ax=b,其中 a 是一个方阵,b 是一个值向量。 scipy 函数 scipy.linalg.svd() 应该将 a 转换为矩阵 U W V。对于
我在 R 中有一个稀疏矩阵,它显然太大了,无法在其上运行 as.matrix()(尽管它也不是 super 大)。有问题的 as.matrix() 调用位于 svd() 函数内部,所以我想知道是否有人
我正在尝试使用 bcv 包中的 SVD 插补,但所有插补值都是相同的(按列)。 这是缺少数据的数据集 http://pastebin.com/YS9qaUPs #load data dataMiss
我有这个数组 double a[][] = {{1,1,1}, {0,1,1} , { 1,0,0} ,{0,1,0},{1,0,0},{1,0,1},{1,1,1},{1,1,1},
我们现在知道A_(m x n) = U_(m x k) * S_(k x k) * V_(k x n)^T = u_(1) * s_1 * v_(1) + u_(2) * s_2 * v_(2) +
我必须对矩阵进行 SVD,但它有一些错误,在下面的示例中 U[1][1]、U[2][1] 和 U[2][0] 应为 0。 问题是,上面的例子只是一个测试,我必须使用条件不太好的大型矩阵,我该怎么做才能
我是一名优秀的程序员,十分优秀!