- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这个问题在这里已经有了答案:
How to repeat elements of an array along two axes?
(5 个回答)
3年前关闭。
关于重复消息的注意事项:
相似的主题,不完全重复。特别是因为循环仍然是最快的方法。谢谢。
目标:
将数组从 [small,small] 快速提升到 [big,big] 一个因子,不要使用图像库。很简单的缩放,一个小值会变成几个大值,对几个大值进行归一化后就变成了。换句话说,这是天文术语中的“通量守恒”——小数组中的 16 值扩展到大数组的 4 个值(2 的因数)将是 4 个 4,因此该值的数量已被保留。
问题:
我有一些工作代码可以进行放大,但与缩小相比,它们的工作速度不是很快。放大实际上比缩小更容易(在这种基本情况下,这需要很多和) - 放大只需要将已知数据放入预分配数组的大块中。
对于一个工作示例,[16,24;8,16] 的 [2,2] 数组:
16 , 24
8 , 16
4 , 4 , 6 , 6
4 , 4 , 6 , 6
2 , 2 , 4 , 4
2 , 2 , 4 , 4
import timeit
timeitSetup = '''
from Regridder1 import Regridder1
import numpy as np
factor = 10;
inArrayX = np.float64(np.arange(0,2048,1));
inArrayY = np.float64(np.arange(0,2048,1));
[inArray, _] = np.meshgrid(inArrayX,inArrayY);
''';
print("Time to run 1: {}".format( timeit.timeit(setup=timeitSetup,stmt="Regridder1(inArray, factor,)", number = 10) ));
timeitSetup = '''
from Regridder2 import Regridder2
import numpy as np
factor = 10;
inArrayX = np.float64(np.arange(0,2048,1));
inArrayY = np.float64(np.arange(0,2048,1));
[inArray, _] = np.meshgrid(inArrayX,inArrayY);
''';
print("Time to run 2: {}".format( timeit.timeit(setup=timeitSetup,stmt="Regridder2(inArray, factor,)", number = 10) ));
import numpy as np
from numba import prange, jit
@jit(nogil=True)
def Regridder1(inArray,factor):
inSize = np.shape(inArray);
outSize = [np.int64(np.round(inSize[0] * factor)), np.int64(np.round(inSize[1] * factor))];
outBlockSize = factor*factor; #the block size where 1 inArray pixel is spread across # outArray pixels
outArray = np.zeros(outSize); #preallcoate
outBlocks = inArray/outBlockSize; #precalc the resized blocks to go faster
for i in prange(0,inSize[0]):
for j in prange(0,inSize[1]):
outArray[i*factor:(i*factor+factor),j*factor:(j*factor+factor)] = outBlocks[i,j]; #puts normalized value in a bunch of places
return outArray;
import numpy as np
def Regridder2(inArray,factor):
inSize = np.shape(inArray);
outSize = [np.int64(np.round(inSize[0] * factor)), np.int64(np.round(inSize[1] * factor))];
outBlockSize = factor*factor; #the block size where 1 inArray pixel is spread across # outArray pixels
outArray = inArray.repeat(factor).reshape(inSize[0],factor*inSize[1]).T.repeat(factor).reshape(inSize[0]*factor,inSize[1]*factor).T/outBlockSize;
return outArray;
import numpy as np
def Regridder1(inArray,factor):
inSize = np.shape(inArray);
outSize = [np.int64(np.round(inSize[0] * factor)), np.int64(np.round(inSize[1] * factor))];
outBlockSize = factor*factor #the block size where 1 inArray pixel is spread across # outArray pixels
outArray = np.empty(outSize) #preallcoate
outBlocks = inArray/outBlockSize #precalc the resized blocks to go faster
factor = np.int64(factor) #convert to an integer to be safe (in case it's a 1.0 float)
outArray = RegridderUpscale(inSize, factor, outArray, outBlocks) #call a function that has just the loop
return outArray;
#END def Regridder1
from numba import jit, prange
@jit(nogil=True, nopython=True, cache=True) #nopython=True, nogil=True, parallel=True, cache=True
def RegridderUpscale(inSize, factor, outArray, outBlocks ):
for i in prange(0,inSize[0]):
for j in prange(0,inSize[1]):
outArray[i*factor:(i*factor+factor),j*factor:(j*factor+factor)] = outBlocks[i,j];
#END for j
#END for i
#scales the original data up, note for other languages you need i*factor+factor-1 because slicing
return outArray; #return success
#END def RegridderUpscale
import numpy as np
def Regridder2(inArray,factor):
inSize = np.shape(inArray);
#outSize = [np.int64(np.round(inSize[0] * factor)), np.int64(np.round(inSize[1] * factor))]; #whoops
outBlockSize = factor*factor; #the block size where 1 inArray pixel is spread across # outArray pixels
outArray = np.broadcast_to( inArray[:,None,:,None]/outBlockSize, (inSize[0], factor, inSize[1], factor)).reshape(np.int64(factor*inSize[0]), np.int64(factor*inSize[1])); #single line call that gets the job done
return outArray;
#END def Regridder2
最佳答案
我使用 512x512
对此做了一些基准测试。字节图像(10 倍高档):
a = np.empty((512, 512), 'B')
>>> %timeit a.repeat(10, 0).repeat(10, 1)
127 ms ± 979 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
>>> %timeit a.repeat(100).reshape(512, 512, 10, 10).swapaxes(1, 2).reshape(5120, 5120)
150 ms ± 1.72 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
t
可以重复使用(和预先计算),它是不定时的。
>>> t = np.arange(512, dtype='B').repeat(10)
>>> %timeit a[t[:,None], t]
143 ms ± 2.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
>>> %timeit np.broadcast_to(a[:,None,:,None], (512, 10, 512, 10)).reshape(5120, 5120)
29.6 ms ± 2.82 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
2048x2048
上的测试结果字节图像如下,其中 View + reshape 仍然获胜
2.04 s ± 31.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
2.4 s ± 18 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
2.3 s ± 25.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
424 ms ± 14.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
2048x2048
的结果
float64
图像是
3.14 s ± 20.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
5.07 s ± 39.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
3.56 s ± 64.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.8 s ± 24.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
关于Python - 使用 Numpy 快速放大数组,不允许使用图像库,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53330908/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!