gpt4 book ai didi

python - SGDRegressor 无意义的结果

转载 作者:行者123 更新时间:2023-11-28 20:20:24 26 4
gpt4 key购买 nike

我尝试为 x 的线性函数回归做一个简单的测试用例,但是 SGDRegressor 给了我一个错误的结果

import numpy as np
from sklearn.linear_model import SGDRegressor
from random import random
X = np.array(range(1000))
y = np.array([x + random() for x in X])
X = X.reshape(1000,1)
sgd = SGDRegressor()
sgd.fit(X, y)
print [sgd.intercept_, sgd.coef_]

[array([ -4.13761484e+08]), array([ -9.66320825e+10])]

最佳答案

我认为这与以下事实有关:将 random() 添加到 0 - 1000 的 int 对 int 的影响很小,因为它们会变大。使用 StandardScaler 作为预处理步骤的特征缩放可能会有所帮助。

根据 Sklearn 的实际使用提示:

Stochastic Gradient Descent is sensitive to feature scaling, so it is highly recommended to scale your data.

在修改您的示例并且不使用特征缩放之后,我注意到产生差异的参数组合是:loss、n_iter、eta0 和 power_t 是值得关注的 - eta0 是主要参数。 SGDRegressor 默认值对于这个问题来说太高了。

import numpy as np
from sklearn.linear_model import SGDRegressor
from random import random
import matplotlib.pyplot as plt
import itertools

X = np.array(range(1000))
y = np.array([x + random() for x in X])
X = X.reshape(-1,1)

fig,ax = plt.subplots(2, 2, figsize=(8,6))
coords = itertools.product([0,1], repeat=2)

for coord,loss in zip(coords, ['huber', 'epsilon_insensitive',
'squared_epsilon_insensitive', 'squared_loss']):
row,col = coord
ax[row][col].plot(X, y, 'k:', label='actual', linewidth=2)
for iteration in [5, 500, 1000, 5000]: # or try range(1, 11)
sgd = SGDRegressor(loss=loss, n_iter=iteration, eta0=0.00001, power_t=0.15)
sgd.fit(X, y)
y_pred = sgd.intercept_[0] + (sgd.coef_[0] * X)
print('Loss:', loss, 'n_iter:', iteration, 'intercept, coef:',
[sgd.intercept_[0], sgd.coef_[0]], 'SSE:', ((y - sgd.predict(X))**2).sum())

ax[row][col].plot(X, y_pred, label='n_iter: '+str(iteration))
ax[row][col].legend()
ax[row][col].set_title(loss)
plt.setp(ax[row][col].legend_.get_texts(), fontsize='xx-small')


plt.tight_layout()
plt.show()

这是打印出来的内容:

Loss: huber n_iter: 5 intercept, coef: [0.001638952911639975, 0.81740614500327669] SSE: 11185831.2597
Loss: huber n_iter: 500 intercept, coef: [0.021493133105072931, 1.0006662185561777] SSE: 137.574163486
Loss: huber n_iter: 1000 intercept, coef: [0.037047745354150396, 1.0006161110073943] SSE: 134.784858635
Loss: huber n_iter: 5000 intercept, coef: [0.12718334969902309, 1.0006005570641865] SSE: 116.13213201
Loss: epsilon_insensitive n_iter: 5 intercept, coef: [0.0046948965851395814, 1.0005010438267816] SSE: 157.935817311
Loss: epsilon_insensitive n_iter: 500 intercept, coef: [0.15261696111333306, 0.99963762449395877] SSE: 359.657749786
Loss: epsilon_insensitive n_iter: 1000 intercept, coef: [0.24224930972696881, 1.0006671880072746] SSE: 126.805962732
Loss: epsilon_insensitive n_iter: 5000 intercept, coef: [0.45888370500803022, 1.0003153040071979] SSE: 106.091573864
Loss: squared_epsilon_insensitive n_iter: 5 intercept, coef: [1774329.1447094907, -113423.55986319004] SSE: 4.08404355317e+18
Loss: squared_epsilon_insensitive n_iter: 500 intercept, coef: [42274920.182269663, -104909.90969312852] SSE: 1.01976866207e+18
Loss: squared_epsilon_insensitive n_iter: 1000 intercept, coef: [22843691.320190568, -37289.079052061767] SSE: 1.33664638821e+17
Loss: squared_epsilon_insensitive n_iter: 5000 intercept, coef: [3165399.5624849019, -3391.4406385053994] SSE: 3.12252668162e+15
Loss: squared_loss n_iter: 5 intercept, coef: [0.29805062264896459, 1.0006351157532956] SSE: 131.697873311
Loss: squared_loss n_iter: 500 intercept, coef: [0.66256539671809789, 1.0001831768155882] SSE: 154.277820955
Loss: squared_loss n_iter: 1000 intercept, coef: [0.13753387481588603, 1.0006362052460742] SSE: 117.151466521
Loss: squared_loss n_iter: 5000 intercept, coef: [0.38191334428572482, 1.0000364177730059] SSE: 89.3183008079

这是绘制出来的样子(注意:每次重新运行时都会发生变化,因此您的输出可能与我的不同):

SGD Loss Responses

值得注意的是,squared_epsilon_insensitive 的 y 轴突然消失,而其他三个损失函数仍在预期范围内。

为了好玩,将 power_t0.15 更改为 0.5。这会产生影响的原因是默认的 learning_rate 参数是 'invscaling'eta = eta0/pow(t, power_t) 计算的p>

SGD is a sensitive flower

关于python - SGDRegressor 无意义的结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31443840/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com