- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用TensorFlow实现一个需要使用tf.while_loop()
import tensorflow as tf
import numpy as np
class model(object):
def __init__(self):
self.argmax_ep_gate_array = [ tf.placeholder(tf.int32, [None]) for _ in range(10)]
argmax_ep_gate_array_concat = tf.concat(0, self.argmax_ep_gate_array)
story_len = tf.constant(7)
starter = tf.constant(0)
z = []
def body(hops):
hops = tf.add(hops,1)
z.append(hops)
return hops
def condition(hops):
return tf.logical_and(tf.less(tf.gather(argmax_ep_gate_array_concat, hops),story_len),tf.less(hops,tf.constant(20)))
self.gate_index = tf.while_loop(condition,body,[starter])
self.z=tf.concat(0,z)
def step(self, sess):
feed={}
for i in range(10):
feed[self.argmax_ep_gate_array[i].name]=[i]
print (sess.run([self.gate_index,self.z],feed))
with tf.Session() as sess:
while_loop = model()
sess.run(tf.initialize_all_variables())
while_loop.step(sess)
我发现如果我想 sess.run() body() 中未返回的任何变量,tensorflow 将陷入无限循环。上面的例子很简单,但它揭示了一些东西。在实际情况下,我正在使用 tf.while_loop()
运行一个 RNN,其中包括 y= wx+b 类似的东西,但是 w
和 b
在 while 循环后不返回。在前向网络中,它工作正常。但是,如果我运行反向传播,程序就会陷入无限循环。我想上面的代码重现了我的问题,因为反向传播确实需要修改 w
和 b
。或者有什么办法可以处理这个问题?
最佳答案
TL;DR:您不能存储在循环体中创建的张量供以后使用,因为这会破坏有关循环结构的一些假设。
一般来说,condition()
和body()
函数不能有副作用。事实上,您的程序不太可能具有预期的行为:TensorFlow 将执行 body()
函数一次,以构建必要的图形结构,因此 z
在运行 model.__init__()
后将只包含一个元素。
相反,您必须在循环体中逐步构造 z
,使用 tf.concat()
并将值生成为循环变量:
starter = tf.constant(0)
z_initial = tf.constant([], dtype=tf.int32)
def body(hops, z_prev):
hops = tf.add(hops, 1)
z_next = tf.concat(0, [z_prev, tf.expand_dims(hops, 0)])
return hops, z_next
def condition(hops, z):
return tf.logical_and(tf.less(tf.gather(
argmax_ep_gate_array_concat, hops), story_len), tf.less(hops, tf.constant(20)))
self.gate_index, self.z = tf.while_loop(condition,body,[starter, z_initial])
关于python - TensorFlow 使用 tf.while_loop() 陷入无限循环,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37571017/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!