- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 pandas,它可以非常有效地按照我需要的方式对数据进行排序/过滤。
此代码运行良好,直到我将最后一列更改为复数;现在我得到一个错误。
return self._cython_agg_general('mean') raise DataError('No numeric types to aggregate') pandas.core.groupby.DataError: No numeric types to aggregate
错误指的是我的第八列(带有复数),因为我想要平均值我找不到将对象转换为复数的方法(据我所知, Pandas 现在支持复数)。
这是我使用的代码。
import numpy as np
import pandas as pd
df = pd.read_csv('final.dat', sep=",", header=None)
df.columns=['X.1', 'X.2', 'X.3', 'X.4','X.5', 'X.6', 'X.7', 'X.8']
df1 = df.groupby(["X.1","X.2","X.5"])["X.8"].mean().reset_index()
之后我得到了上述错误。
当我读取我的文件时,这是 df 输出。
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21266 entries, 0 to 21265
Data columns (total 8 columns):
X.1 21266 non-null values
X.2 21266 non-null values
X.3 21266 non-null values
X.4 21266 non-null values
X.5 21266 non-null values
X.6 21266 non-null values
X.7 21266 non-null values
X.8 21266 non-null values
dtypes: float64(4), int64(3), object(1)
这是 input file 的一小部分样本.
最佳答案
parse不支持直接读取complex,所以做下面的转换。
In [37]: df['X.8'] = df['X.8'].str.replace('i','j').apply(lambda x: np.complex(x))
In [38]: df
Out[38]:
X.1 X.2 X.3 X.4 X.5 X.6 X.7 X.8
0 564991.15 7371277.89 0 1 1530 0.1 2 (92.289+151.96j)
1 564991.15 7371277.89 0 1 8250 0.1 2 (104.22-43.299j)
2 564991.15 7371277.89 0 1 20370 0.1 2 (78.76-113.52j)
3 564991.15 7371277.89 0 1 33030 0.1 2 (27.141-154.1j)
4 564991.15 7371277.89 0 1 47970 0.1 2 (-30.012-175j)
5 564991.15 7371277.89 0 1 63090 0.1 2 (-118.52-342.43j)
6 564991.15 7371277.89 0 1 93090 0.1 2 (-321.02-1541.5j)
7 564991.15 7371277.89 0 2 1530 0.1 2 (118.73+154.05j)
8 564991.15 7371277.89 0 2 8250 0.1 2 (122.13-45.571j)
9 564991.15 7371277.89 0 2 20370 0.1 2 (93.014-116.03j)
10 564991.15 7371277.89 0 2 33030 0.1 2 (38.56-155.08j)
11 564991.15 7371277.89 0 2 47970 0.1 2 (-20.653-173.83j)
12 564991.15 7371277.89 0 2 63090 0.1 2 (-118.41-340.58j)
13 564991.15 7371277.89 0 2 93090 0.1 2 (-378.71-1554j)
14 564990.35 7371279.17 0 1785 1530 0.1 2 (-15.441+118.3j)
15 564990.35 7371279.17 0 1785 8250 0.1 2 (-7.1735-76.487j)
16 564990.35 7371279.17 0 1785 20370 0.1 2 (-33.847-145.99j)
17 564990.35 7371279.17 0 1785 33030 0.1 2 (-86.035-185.46j)
18 564990.35 7371279.17 0 1785 47970 0.1 2 (-143.37-205.23j)
19 564990.35 7371279.17 0 1785 63090 0.1 2 (-234.67-370.43j)
20 564990.35 7371279.17 0 1785 93090 0.1 2 (-458.69-1561.4j)
21 564990.36 7371279.17 0 1786 1530 0.1 2 (36.129+128.4j)
22 564990.36 7371279.17 0 1786 8250 0.1 2 (39.406-69.607j)
23 564990.36 7371279.17 0 1786 20370 0.1 2 (10.495-139.48j)
24 564990.36 7371279.17 0 1786 33030 0.1 2 (-43.535-178.19j)
25 564990.36 7371279.17 0 1786 47970 0.1 2 (-102.28-196.76j)
26 564990.36 7371279.17 0 1786 63090 0.1 2 (-199.32-362.1j)
27 564990.36 7371279.17 0 1786 93090 0.1 2 (-458.09-1565.6j)
In [39]: df.dtypes
Out[39]:
X.1 float64
X.2 float64
X.3 float64
X.4 int64
X.5 int64
X.6 float64
X.7 int64
X.8 complex128
dtype: object
In [40]: df1 = df.groupby(["X.1","X.2","X.5"])["X.8"].mean().reset_index()
In [41]: df.groupby(["X.1","X.2","X.5"])["X.8"].mean().reset_index()
Out[41]:
X.1 X.2 X.5 X.8
0 564990.35 7371279.17 1530 (-15.441+118.3j)
1 564990.35 7371279.17 8250 (-7.1735-76.487j)
2 564990.35 7371279.17 20370 (-33.847-145.99j)
3 564990.35 7371279.17 33030 (-86.035-185.46j)
4 564990.35 7371279.17 47970 (-143.37-205.23j)
5 564990.35 7371279.17 63090 (-234.67-370.43j)
6 564990.35 7371279.17 93090 (-458.69-1561.4j)
7 564990.36 7371279.17 1530 (36.129+128.4j)
8 564990.36 7371279.17 8250 (39.406-69.607j)
9 564990.36 7371279.17 20370 (10.495-139.48j)
10 564990.36 7371279.17 33030 (-43.535-178.19j)
11 564990.36 7371279.17 47970 (-102.28-196.76j)
12 564990.36 7371279.17 63090 (-199.32-362.1j)
13 564990.36 7371279.17 93090 (-458.09-1565.6j)
14 564991.15 7371277.89 1530 (105.5095+153.005j)
15 564991.15 7371277.89 8250 (113.175-44.435j)
16 564991.15 7371277.89 20370 (85.887-114.775j)
17 564991.15 7371277.89 33030 (32.8505-154.59j)
18 564991.15 7371277.89 47970 (-25.3325-174.415j)
19 564991.15 7371277.89 63090 (-118.465-341.505j)
20 564991.15 7371277.89 93090 (-349.865-1547.75j)
关于python pandas 复数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18919699/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!