gpt4 book ai didi

python - 合并大量 netCDF 文件

转载 作者:行者123 更新时间:2023-11-28 20:05:38 26 4
gpt4 key购买 nike

我有一个很大的 netCDF (.nc) 文件文件夹,每个文件的名称都相似。数据文件包含时间、经度、纬度和月降水量变量。目标是获得 X 年中每个月的平均月降水量。所以最后我会有 12 个值代表每个纬度和经度 X 年的平均月降水量。多年来,每个文件都位于同一位置。每个文件都以相同的名称开头并以“date.sub.nc”结尾,例如:

'data1.somthing.somthing1.avg_2d_Ind_Nx.200109.SUB.nc'
'data1.somthing.somthing1.avg_2d_Ind_Nx.200509.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201104.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201004.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201003.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201103.SUB.nc'
'data1.somthing.somthing1.avg_2d_Ind_Nx.201203.SUB.nc'

结尾是YearMonth.SUB.nc到目前为止我所拥有的是:

array=[]
f = nc.MFDataset('data*.nc')
precp = f.variables['prectot']
time = f.variables['time']
array = f.variables['time','longitude','latitude','prectot']

我得到一个 KeyError: ('time', 'longitude', 'latitude', 'prectot')。有没有一种方法可以组合所有这些数据以便我能够对其进行操作?

最佳答案

正如@CharlieZender 所提到的,ncra 是实现此目的的方法,我将提供更多关于将该函数集成到 Python 脚本中的详细信息。 (PS - 您可以使用 Homebrew 轻松安装 NCO,例如 http://alejandrosoto.net/blog/2014/01/22/setting-up-my-mac-for-scientific-research/ )

import subprocess
import netCDF4
import glob
import numpy as np

for month in range(1,13):
# Gather all the files for this month
month_files = glob.glob('/path/to/files/*{0:0>2d}.SUB.nc'.format(month))


# Using NCO functions ---------------
avg_file = './precip_avg_{0:0>2d}.nc'.format(month)

# Concatenate the files using ncrcat
subprocess.call(['ncrcat'] + month_files + ['-O', avg_file])

# Take the time (record) average using ncra
subprocess.call(['ncra', avg_file, '-O', avg_file])

# Read in the monthly precip climatology file and do whatever now
ncfile = netCDF4.Dataset(avg_file, 'r')
pr = ncfile.variables['prectot'][:,:,:]
....

# Using only Python -------------
# Initialize an array to store monthly-mean precip for all years
# let's presume we know the lat and lon dimensions (nlat, nlon)
nyears = len(month_files)
pr_arr = np.zeros([nyears,nlat,nlon], dtype='f4')

# Populate pr_arr with each file's monthly-mean precip
for idx, filename in enumerate(month_files):
ncfile = netCDF4.Dataset(filename, 'r')
pr = ncfile.variable['prectot'][:,:,:]
pr_arr[idx,:,:] = np.mean(pr, axis=0)
ncfile.close()

# Take the average along all years for a monthly climatology
pr_clim = np.mean(pr_arr, axis=0) # 2D now [lat,lon]

关于python - 合并大量 netCDF 文件,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28953219/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com