- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在参加 Kaggle 竞赛 (data here) ,我在使用 scikit-learn 的 GradientBoostingRegressor 时遇到了问题。比赛使用均方根误差 (RMLSE) 来评估预测。
为了 MWE,这里是我用来清理上面链接中的 train.csv
的代码:
import datetime
import pandas as pd
train = pd.read_csv("train.csv", index_col=0)
train.pickup_datetime = pd.to_datetime(train.pickup_datetime)
train["pickup_month"] = train.pickup_datetime.apply(lambda x: x.month)
train["pickup_day"] = train.pickup_datetime.apply(lambda x: x.day)
train["pickup_hour"] = train.pickup_datetime.apply(lambda x: x.hour)
train["pickup_minute"] = train.pickup_datetime.apply(lambda x: x.minute)
train["pickup_weekday"] = train.pickup_datetime.apply(lambda x: x.weekday())
train = train.drop(["pickup_datetime", "dropoff_datetime"], axis=1)
train["store_and_fwd_flag"] = pd.get_dummies(train.store_and_fwd_flag, drop_first=True)
X_train = train.drop("trip_duration", axis=1)
y_train = train.trip_duration
为了说明有效,如果我使用随机森林,则 RMSLE 计算得很好:
import numpy as np
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import make_scorer
from sklearn.model_selection import cross_val_score
def rmsle(predicted, real):
sum=0.0
for x in range(len(predicted)):
p = np.log(predicted[x]+1)
r = np.log(real[x]+1)
sum = sum + (p - r)**2
return (sum/len(predicted))**0.5
rmsle_score = make_scorer(rmsle, greater_is_better=False)
rf = RandomForestRegressor(random_state=1839, n_jobs=-1, verbose=2)
rf_scores = cross_val_score(rf, X_train, y_train, cv=3, scoring=rmsle_score)
print(np.mean(rf_scores))
这运行得很好。 但是,梯度提升回归器抛出RuntimeWarning: invalid value encountered in log
,我从print
中得到一个nan
> 声明。查看三个 RMSLE 分数的数组,它们都是 nan
。
gb = GradientBoostingRegressor(verbose=2)
gbr_scores = cross_val_score(gb, X_train, y_train, cv=3, scoring=rmsle_score)
print(np.mean(gbr_scores))
我认为这是因为我在某些不该出现的地方得到了负值。 Kaggle 告诉我它也遇到了零或非负 RMSLE,当我在那里上传我的预测以查看它是否与我的代码有关时。梯度提升不能用于这个问题有什么原因吗?如果我使用 mean_squared_error
作为记分器 (mse_score = make_scorer(mean_squared_error, greater_is_better=False)
),它会很好地返回。
我确定我遗漏了一些关于梯度提升的简单知识;为什么这种评分方法不适用于梯度提升回归器?
最佳答案
我建议你把这个矢量化
def rmsle(y, y0):
return np.sqrt(np.mean(np.square(np.log1p(y) - np.log1p(y0))))
可以在这里找到基准
关于python - scitkit-learn.ensemble.GradientBoostingRegressor 的均方根对数平方误差问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46202223/
我有一个任务,必须求解线性方程组 Ax =B,其中 A 是 10000 量级的稀疏矩阵。我正在使用 csparse 来求解它。在我的初始实现中,出于演示目的,A 是 3*3 阶单位矩阵,B ={1,2
我正在尝试训练随机森林模型,但出现以下错误。我需要对分类模型使用不同的设置来解决 RMSE 问题吗?我尝试将“好”转换为一个因素,但这引发了一个新错误。 错误: Error in train.defa
当使用 %Lf 打印时,一个大的 double 值被改变以下组合的值给出正确的结果小数点前9位/小数点后6位例如用 %Lf 打印的小数点前 9 位的值输入:3435537287.32输出:343553
我正在尝试实现高度为 100% 的重复垂直背景。遗憾的是,每当我试图通过仅添加纯文本来扩展页面的高度时,具有 100% 高度和背景重复的背景就会被切掉。我只想让背景重复。这是屏幕截图。 http://
所以我有: t = [0.0, 3.0, 5.0, 7.2, 10.0, 13.0, 15.0, 20.0, 25.0, 30.0, 35.0] U = [12.5, 10.0, 7.6, 6.0,
我使用了 Nister 的 5 点法来计算基本矩阵。使用 RANSAC 和 Sampson 错误阈值进一步改进了异常值拒绝。我随机选择 5 个点集,估计基本矩阵并评估匹配向量的 Sampson 误差。
为分类问题运行 gbm 函数时。我收到以下错误: Error in res[flag, ] 0.5,1,0) table(pred,df$Group) pred 0 1 0 98
我使用 Angular ngTagsInput,我的列表如下: [{text: "4353453"}, {text: "453453"}, {text: "4534534"}, {text: "53
我正在尝试 Angular 问题,并且坚持理解错误,这意味着如果我无法理解错误,我将无法前进,例如 zone.js:654 Unhandled Promise rejection: Failed to
我有一个关于在线性混合模型上运行事后测试的问题: 我正在 lme4 中运行一个线性混合模型,分为 3 组,每组 5 条蛇,每组采用不同的通气率 (Vent),在不同的位置进行测量时间点 (Time),
我正在尝试运行逻辑回归并不断收到“NA”错误。问题是它说有 NA 的列没有 NA,全是 0 或 1。我的代码如下: #V1=race, V2=momcounts of breast cancer, V
我在输出之间得到随机 NaN。 Random Temp:61.816288952756864 'F Random Temp:NaN 'F Random Temp:NaN 'F Random Temp:
我正在尝试通过取下平板框架来减少我的大炮天文图像,这很有效。但它使所有值都非常低(所以几乎是黑色图片),这就是为什么我也想将其乘以平均值。然而这给了我一个错误。 (虽然没有乘法它也能工作。) 有人知道
我正在使用 adaboost 构建一个模型,并尝试让 roc 图发挥作用。这是我的代码: ens=fitensemble(X,y,'AdaBoostM1',100,'Tree'); [ytest, s
当尝试使用 Protractor 和 Angular Testing 模态窗口上的可见按钮时,我收到以下错误: UnknownError: unknown error: Element is not
我正在尝试使用命令通过 Yeoman 构建 Angular “哟有 Angular ” 一切正常,直到我到达 tmp 目录: npm ERR! Error: EACCES, mkdir '/home/
我在使用 OpenCV 计算立体声对的校正时遇到一些问题:stereoCalibrate 返回高均方根误差,我得到了错误的校正对。我尝试了我的整改程序和 opencv 提供的 stereo_calib
我在 Mac (OS X 10.9) 上安装了 Yeoman,并且正在尝试运行 yo angular。 我收到以下错误: path.js:384 throw new TypeError('Ar
我有运行循环的线程。我需要该循环每 5 毫秒运行一次(1 毫秒错误)。我知道 Sleep() 函数并不精确。 你有什么建议吗? 更新。我不能用其他方式做到这一点。在循环结束时,我需要某种 sleep
我一直在试验 FFT 算法。我使用 NAudio 以及来自互联网的 FFT 算法的工作代码。根据我对性能的观察,生成的音调不准确。 我将 MIDI(从 GuitarPro 生成)转换为 WAV 文件(
我是一名优秀的程序员,十分优秀!