- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个 pandas 数据框 df
看起来像这样:
no_obs price_cleaning house_size
0 1 585 30
1 1 585 40
2 1 585 43
3 1 650 43
4 1 633 44
5 1 650 45
6 2 585 50
7 1 633 50
8 1 650 50
9 2 750 50
我想用这个函数对 price_cleaning
列中的值进行四舍五入:
def roundup(x):
返回 int(math.ceil(x/10.0)) * 10
我已经尝试了这个答案的解决方案(Applying function to Pandas dataframe by column):
cols = [col for col in df.columns if col != 'price_cleaning']
df[cols] = df[cols].apply(roundup)
我收到以下错误:TypeError: ("cannot convert the series to ", 'occurred at index no_obs')
谁能帮我理解为什么这不起作用?如何将汇总函数应用于列?非常感谢任何帮助。
最佳答案
我会像这样矢量化
In [298]: df['p'] = (np.ceil(df.price_cleaning / 10) * 10).astype(int)
In [299]: df
Out[299]:
no_obs price_cleaning house_size p
0 1 585 30 590
1 1 585 40 590
2 1 585 43 590
3 1 650 43 650
4 1 633 44 640
5 1 650 45 650
6 2 585 50 590
7 1 633 50 640
8 1 650 50 650
9 2 750 50 750
对于 10K 行,计时 - 向量化方法比应用
快约 15 倍
In [331]: %timeit (np.ceil(dff.price_cleaning / 10) * 10).astype(int)
1000 loops, best of 3: 436 µs per loop
In [332]: %timeit dff['price_cleaning'].apply(roundup)
100 loops, best of 3: 7.86 ms per loop
In [333]: dff.shape
Out[333]: (10000, 4)
至少在这种情况下,性能差距会随着行数的增加而增加。
关于python - 在 Pandas 数据框中四舍五入一列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41303189/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!