- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 Random Forest Regressor python 的 scikit-learn 模块来预测一些值。我使用 joblib.dump 来保存模型。有 24 个 joblib.dump 文件,每个文件重 45 兆字节(所有文件的总和 = 931mb)。我的问题是:
我想在一个程序中加载所有这 24 个文件以预测 24 个值 - 但我做不到。它给出了 MemoryError。我如何才能在一个程序中加载所有 24 个 joblib 文件而不会出现任何错误?
提前致谢...
最佳答案
选项很少,具体取决于内存不足的具体位置。
例如:
predictions = []
for regressor_file in all_regressors:
regressor = joblib.load(regressor_file)
predictions.append(regressor.predict(X))
(可能不适用于您的情况,但这个问题很常见)。加载大量输入数据时,您可能会耗尽内存。要解决此问题 - 您可以拆分输入数据并对子批处理运行预测。当我们从本地运行预测转移到 EC2 时,这对我们很有帮助。尝试在较小的输入数据集上运行您的代码,以测试这是否有帮助。
您可能想要优化 RFR 的参数。您可能会发现,使用较浅的树或较少数量的树(或两者)可以获得相同的预测能力。构建一个大到不必要的随机森林非常容易。当然,这是特定于问题的。我必须减少树的数量并使树变小才能使模型在生产中高效运行。就我而言,AUC 在优化之前/之后是相同的。教程中有时会省略模型调整的最后一步。
关于python - joblib.load 文件加载错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14557597/
我正在努力解决 joblib 问题。 我需要将推理应用程序推送到远程服务器,并且我还需要加载保存的标准缩放器,因为如果我尝试适应,我会收到内存不足异常。我无法对服务器进行物理更改,因为它是 sap c
我在 Docker 容器内的 Flask 应用程序中运行 joblib 以及由 supervisord 启动的 uWSGI(启动时启用线程)。 网络服务器启动显示如下错误: unable to loa
我正在尝试在 python 中使用并行计算包 joblib。我可以执行下面的例子并得到结果 Parallel(n_jobs=8)(delayed(sqrt)(i) for i in range(10)
这是我的代码: from math import sqrt from joblib import Parallel, delayed import multiprocessing def parall
我正在使用Python中joblib包中的Parallel函数。我只想使用此函数来处理我的函数之一,但不幸的是整个代码是并行运行的(除了其他函数)。 示例: from joblib import Pa
我正在努力学习 joblib模块作为 python 中内置 multiprocessing 模块的替代品。我习惯于使用 multiprocessing.imap 在可迭代对象上运行一个函数并返回结果。
我正在尝试使用 joblib 来并行化一个在函数上运行的循环。我希望显示函数的中间 print 命令,而不仅仅是函数的 return 值。 from joblib import Parallel, d
我想打乱 3D numpy 数组中的值,但前提是它们 > 0。 当我用单核运行我的函数时,它甚至比使用 2 个核快得多。这远远超出了创建新 python 进程的开销。我错过了什么? 以下代码输出: r
我的目标结构: 工具 model_maker.py 模特 模型在这里 我当前的代码,位于工具目录中 joblib.dump(pipeline, "../models/model_full_June20
是否可以使用 joblib.Memory 以线程安全的方式写入跨多个进程的公共(public)缓存。在什么情况下,这会失败或导致错误? 最佳答案 库首先写入临时文件,然后将临时文件移动到目的地。 So
我目前正在尝试实现 parallel for循环使用 joblib在 python 中 3.8.3 . 在 for 循环中,我想将一个类方法应用于一个类的实例,同时在另一个类中应用一个方法。 这是一个
我的代码看起来像这样: from joblib import Parallel, delayed # prediction model - 10s of megabytes on disk LARGE
from joblib import Parallel, delayed def func(v): temp.append(v) return temp = [] Parallel(n
有关于使用内存映射文件在 Joblib 中持久保存 Numpy 数组的良好文档。 在最近的版本中,Joblib(显然)会以这种方式自动保留和共享 Numpy 数组。 Pandas 数据帧也会被持久化,
我正在运行一个需要一段时间才能评估 16 次的函数。然而,所有这些运行都是相互独立的。因此我决定使用 joblib 来加速它。 Joblib 的工作方式就像它应该的那样并加快了速度,但我正在努力解决一
我正在使用 joblib 并行化我的 python 3.5 代码。 如果我这样做: from modules import f from joblib import Parallel, delaye
我正在使用 Random Forest Regressor python 的 scikit-learn 模块来预测一些值。我使用 joblib.dump 来保存模型。有 24 个 joblib.dum
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎是题外话,因为它缺乏足够的信息来诊断问题。 更详细地描述您的问题或include a min
我想问同样的问题 Python 3: does Pool keep the original order of data passed to map?对于作业库。例如: Parallel(n_jobs
我需要在使用 Joblib 并行的函数中生成随机数。但是,从内核生成的随机数是完全相同的。 目前我通过为不同的核心分配随机种子来解决这个问题。有什么简单的方法可以解决这个问题吗? 最佳答案 这是预料之
我是一名优秀的程序员,十分优秀!