gpt4 book ai didi

python - 它应该更快,cProfile说它更快,但程序实际上运行得更慢

转载 作者:行者123 更新时间:2023-11-28 19:23:52 25 4
gpt4 key购买 nike

希望你能帮忙,因为这个让我很头疼。

我正在用 python(3.3) 开发一个小型捕食者-猎物模拟,它使用一个简单的前馈神经网络。今天,我将执行大脑每个“滴答声”的函数从纯 python 更改为 numpy 数组,以便在我使用更大的大脑时对其进行优化。

我用 cProfile 检查了(整个主程序“循环”的)性能速度,正如我所料,“tick”函数(在 brain 类中)更快。但是,在运行该程序时,我注意到实际上使用 numpy 的速度较慢(100 次循环在 ~12 秒内 vs 100 次循环在 ~9 秒内)。

为什么会这样?这是代码:

原始实现:

class Brain:

def __init__(self, inputs, hidden, outputs):
self.input_num = inputs
self.hidden_num = hidden
self.output_num = outputs

self.h_weight = []
self.o_weight = []
for _ in range(self.input_num * self.hidden_num):
self.h_weight.append(random.random()*2-1)
for _ in range(self.hidden_num * self.output_num):
self.o_weight.append(random.random()*2-1)

def tick(self):
input_num = self.input_num
hidden_num = self.hidden_num
output_num = self.output_num

hidden = [0]*hidden_num
output = [0]*output_num

inputs = self.input
h_weight = self.h_weight
o_weight = self.o_weight

e = math.e

count = -1
for x in range(hidden_num):
temp = 0
for y in range(input_num):
count += 1
temp -= inputs[y] * h_weight[count]
hidden[x] = 1/(1+e**(temp))

count = -1
for x in range(output_num):
temp = 0
for y in range(hidden_num):
count += 1
temp -= hidden[y] * o_weight[count]
output[x] = 1/(1+e**(temp))

self.output = output

新实现(使用 numpy):

class Brain:

def __init__(self, inputs, hidden, outputs):
self.input_num = inputs
self.hidden_num = hidden
self.output_num = outputs


self.h_weights = random.random((self.hidden_num, self.input_num))
self.o_weights = random.random((self.output_num, self.hidden_num))

self.h_activation = zeros((self.hidden_num, 1), dtype=float)
self.o_activation = zeros((self.output_num, 1), dtype=float)

self.i_output = zeros((self.input_num, 1), dtype=float)
self.h_output = zeros((self.hidden_num, 1), dtype=float)
self.o_output = zeros((self.output_num, 1), dtype=float)

def tick(self):
i_output = self.input
h_weights = self.h_weights
o_weights = self.o_weights

h_activation = dot(h_weights, i_output)
h_output = tanh(h_activation)

o_activation = dot(o_weights, h_output)
o_output = tanh(o_activation)
self.output = o_output

这里是程序的主循环,我已经计时(忽略其他函数,它们对“brain.tick()”函数没有影响)。它在另一个类中,这也是无关紧要的:

    def update(self):
GUI.update()

if not self.pause:
self.tick += 1

if self.tick % 1000 == 0:
if self.globalSelection:
self.newGeneration(self.creatures)
else:
for specie in self.species:
if not specie.isPlant:
creatureList = [creature for creature in self.creatures if creature.specie == specie]
self.newGeneration(creatureList)


for creature in self.creatures:
if not creature.specie.isPlant:
if self.useHunger and creature.hunger < 1:
creature.hunger += 1/240
creature.setInputs()
creature.brain.tick()
creature.move(creature.brain.output[0]*50-25, creature.brain.output[1]*8)
creature.interactions()

threading.Timer(self.tickrate, self.update).start()

现在大脑设置为 5 个输入、200 个隐藏和 2 个输出,只是为了测试速度。以下是 cProfile 的结果:

原文:

         3312 function calls in 0.094 seconds



Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.094 0.094 <string>:1(<module>)
200 0.006 0.000 0.007 0.000 __init__.py:263(move)
200 0.024 0.000 0.024 0.000 __init__.py:286(setInputs)
200 0.001 0.000 0.001 0.000 __init__.py:360(interactions)
200 0.033 0.000 0.033 0.000 __init__.py:415(tick)
1 0.005 0.005 0.094 0.094 __init__.py:46(update)
1 0.007 0.007 0.020 0.020 __init__.py:471(update)
1 0.000 0.000 0.000 0.000 _weakrefset.py:79(add)
3 0.000 0.000 0.000 0.000 threading.py:127(__init__)
1 0.000 0.000 0.000 0.000 threading.py:160(_release_save)
1 0.000 0.000 0.000 0.000 threading.py:163(_acquire_restore)
1 0.000 0.000 0.000 0.000 threading.py:166(_is_owned)
1 0.000 0.000 0.000 0.000 threading.py:175(wait)
2 0.000 0.000 0.000 0.000 threading.py:297(__init__)
1 0.000 0.000 0.000 0.000 threading.py:305(is_set)
1 0.000 0.000 0.000 0.000 threading.py:325(wait)
1 0.000 0.000 0.000 0.000 threading.py:507(_newname)
1 0.000 0.000 0.000 0.000 threading.py:534(__init__)
1 0.000 0.000 0.000 0.000 threading.py:577(start)
1 0.000 0.000 0.000 0.000 threading.py:775(daemon)
1 0.000 0.000 0.000 0.000 threading.py:810(__init__)
1 0.000 0.000 0.000 0.000 threading.py:887(current_thread)
225 0.002 0.000 0.002 0.000 {built-in method aacircle}
200 0.001 0.000 0.001 0.000 {built-in method aaline}
200 0.000 0.000 0.000 0.000 {built-in method abs}
4 0.000 0.000 0.000 0.000 {built-in method allocate_lock}
200 0.001 0.000 0.001 0.000 {built-in method atan2}
400 0.001 0.000 0.001 0.000 {built-in method cos}
1 0.000 0.000 0.094 0.094 {built-in method exec}
225 0.001 0.000 0.001 0.000 {built-in method filled_circle}
4 0.000 0.000 0.000 0.000 {built-in method filled_polygon}
1 0.000 0.000 0.000 0.000 {built-in method get_ident}
1 0.000 0.000 0.000 0.000 {built-in method get_pressed}
1 0.000 0.000 0.000 0.000 {built-in method get}
2 0.000 0.000 0.000 0.000 {built-in method len}
200 0.000 0.000 0.000 0.000 {built-in method radians}
1 0.000 0.000 0.000 0.000 {built-in method round}
400 0.001 0.000 0.001 0.000 {built-in method sin}
1 0.000 0.000 0.000 0.000 {built-in method start_new_thread}
1 0.006 0.006 0.006 0.006 {built-in method update}
5 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.lock' objects}
1 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects}
1 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
2 0.000 0.000 0.000 0.000 {method 'blit' of 'pygame.Surface' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.001 0.001 0.001 0.001 {method 'fill' of 'pygame.Surface' objects}
8 0.000 0.000 0.000 0.000 {method 'random_sample' of 'mtrand.RandomState' objects}
2 0.000 0.000 0.000 0.000 {method 'release' of '_thread.lock' objects}
3 0.000 0.000 0.000 0.000 {method 'render' of 'pygame.font.Font' objects}

新:

                3322 function calls in 0.068 seconds



Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.068 0.068 <string>:1(<module>)
200 0.005 0.000 0.006 0.000 __init__.py:265(move)
200 0.022 0.000 0.023 0.000 __init__.py:288(setInputs)
200 0.001 0.000 0.001 0.000 __init__.py:362(interactions)
200 0.005 0.000 0.014 0.000 __init__.py:417(tick)
1 0.005 0.005 0.068 0.068 __init__.py:47(update)
1 0.005 0.005 0.019 0.019 __init__.py:473(update)
1 0.000 0.000 0.000 0.000 _weakrefset.py:79(add)
3 0.000 0.000 0.000 0.000 threading.py:127(__init__)
1 0.000 0.000 0.000 0.000 threading.py:160(_release_save)
1 0.000 0.000 0.000 0.000 threading.py:163(_acquire_restore)
1 0.000 0.000 0.000 0.000 threading.py:166(_is_owned)
1 0.000 0.000 0.000 0.000 threading.py:175(wait)
2 0.000 0.000 0.000 0.000 threading.py:297(__init__)
1 0.000 0.000 0.000 0.000 threading.py:305(is_set)
1 0.000 0.000 0.000 0.000 threading.py:325(wait)
1 0.000 0.000 0.000 0.000 threading.py:507(_newname)
1 0.000 0.000 0.000 0.000 threading.py:534(__init__)
1 0.000 0.000 0.000 0.000 threading.py:577(start)
1 0.000 0.000 0.000 0.000 threading.py:775(daemon)
1 0.000 0.000 0.000 0.000 threading.py:810(__init__)
1 0.000 0.000 0.000 0.000 threading.py:887(current_thread)
225 0.002 0.000 0.002 0.000 {built-in method aacircle}
200 0.001 0.000 0.001 0.000 {built-in method aaline}
200 0.001 0.000 0.001 0.000 {built-in method abs}
4 0.000 0.000 0.000 0.000 {built-in method allocate_lock}
200 0.000 0.000 0.000 0.000 {built-in method atan2}
400 0.001 0.000 0.001 0.000 {built-in method cos}
400 0.008 0.000 0.008 0.000 {built-in method dot}
1 0.000 0.000 0.068 0.068 {built-in method exec}
225 0.001 0.000 0.001 0.000 {built-in method filled_circle}
4 0.000 0.000 0.000 0.000 {built-in method filled_polygon}
1 0.000 0.000 0.000 0.000 {built-in method get_ident}
1 0.000 0.000 0.000 0.000 {built-in method get_pressed}
1 0.000 0.000 0.000 0.000 {built-in method get}
2 0.000 0.000 0.000 0.000 {built-in method len}
200 0.000 0.000 0.000 0.000 {built-in method radians}
1 0.000 0.000 0.000 0.000 {built-in method round}
400 0.001 0.000 0.001 0.000 {built-in method sin}
1 0.000 0.000 0.000 0.000 {built-in method start_new_thread}
1 0.005 0.005 0.005 0.005 {built-in method update}
5 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.lock' objects}
1 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects}
1 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
2 0.000 0.000 0.000 0.000 {method 'blit' of 'pygame.Surface' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.002 0.002 0.002 0.002 {method 'fill' of 'pygame.Surface' objects}
18 0.000 0.000 0.000 0.000 {method 'random_sample' of 'mtrand.RandomState' objects}
2 0.000 0.000 0.000 0.000 {method 'release' of '_thread.lock' objects}
3 0.000 0.000 0.000 0.000 {method 'render' of 'pygame.font.Font' objects}

如您所见,整个 update() 函数(模拟的核心)和 brain.tick() 似乎要快得多。那为什么程序运行的时候比较慢呢?

干杯。

最佳答案

在您的新实现中,您为每个 Brain 对象创建了 5 个 numpy 数组:

self.h_activation = zeros((self.hidden_num, 1), dtype=float)
self.o_activation = zeros((self.output_num, 1), dtype=float)

self.i_output = zeros((self.input_num, 1), dtype=float)
self.h_output = zeros((self.hidden_num, 1), dtype=float)
self.o_output = zeros((self.output_num, 1), dtype=float)

这些属性在代码的其他部分没有被引用。创建它们是一项可能代价高昂的操作,在原始实现中似乎没有直接对应的操作。我不确定它是否会超过更快的 numpy 计算的速度优势,但如果您正在创建大量 Brain 对象,那么它值得一看。

关于python - 它应该更快,cProfile说它更快,但程序实际上运行得更慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/17778241/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com