- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个管道只包含一个特征联合,它具有三组不同的特征,包括 tfidf:
A_vec = AVectorizer()
B_vec = BVectorizer()
tfidf_vec = TfidfVectorizer(ngram_range=(1,2), analyzer='word', binary=False, stop_words=stopWords, min_df=0.01, use_idf=True)
all_features = FeatureUnion([('A_feature', A_vec), ('V_feature', B_vec), ('tfidf_feature', tfidf_vec)])
pipeline = Pipeline([('all_feature', all_features)])
我想为我的测试数据保存这个流水线特征转换器(我正在使用 LibSVM 进行分类),这是我尝试过的:
我已经使用 joblib.dump 来保存这个管道,但是它生成了太多的 .npy 文件,所以我不得不停止写入过程。这是一个相当愚蠢的尝试!
我已经保存了 tfidf_vec.vocabulary_,因此
tfidf_vec2 = TfidfVectorizer(ngram_range=(1,3), analyzer='word', binary=False, stop_words=stopWords, min_df=0.01, use_idf=True,vocabulary=pickle.load(open("../vocab) .pkl", "rb"))
…………
feat_test = pipeline2.transform(X_test)
它说“NotFittedError:未安装 idf 向量”。然后我使用 fit_transform 而不是 transform 但它生成了一个包含不同值的特征向量(与正确的特征向量相比)。然后我关注了http://thiagomarzagao.com/2015/12/08/saving-TfidfVectorizer-without-pickles/并且仍在努力让它发挥作用。
有没有更简单的方法来实现这一点?谢谢!
最佳答案
不清楚您想实现什么以及面临什么问题。据我了解,您尝试过这个
I have used joblib.dump to save this pipeline but it generated toooo many .npy files so I had to stop the writing process. It was a rather stupid attempt!
由于这不能让您满意,您尝试了其他一些替代方案。好吧,如果你只想生成一个文件,你可以这样做:
joblib.dump(pipeline, 'filename.pkl', compress = 1)
此外,我强烈建议您下次插入一个最小可行示例!
关于python - 如何保存 sklearn pipeline/feature-transformer,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34376532/
我知道有几个类似的问题被问到,但我的问题仍然没有得到解答。 问题来了。我使用命令 python3 -m pip3 install -U scikit-learn 来安装 sklearn、numpy 和
_train_weather.values : [[ 0.61818182 0.81645199 0.6679803 ..., 0. 0. 1.
如果我有一个数据集X及其标签Y,那么我将其分为训练集和测试集,scle为0.2,并使用随机种子进行洗牌: 11 >>>X.shape (10000, 50,50) train_data, test_d
首先我查看了所有相关问题。给出了非常相似的问题。 所以我遵循了链接中的建议,但没有一个对我有用。 Data Conversion Error while applying a function to
这里有两种标准化方法: 1:这个在数据预处理中使用:sklearn.preprocessing.normalize(X,norm='l2') 2:分类方法中使用另一种方法:sklearn.svm.Li
所以刚看了一个教程,作者不需要import sklearn使用时 predict anaconda 环境中pickled 模型的功能(安装了sklearn)。 我试图在 Google Colab 中重
我想评估我的机器学习模型。我使用 roc_auc_score() 计算了 ROC 曲线下的面积,并使用 sklearn 的 plot_roc_curve() 函数绘制了 ROC 曲线。在第二个函数中,
我一直在寻找此信息,但在任何地方都找不到,所以这是我的镜头。 我是Python 2.7的初学者,我学习了一个模型,感谢cPickle我保存了它,但现在我想知道是否可以从另一个设备(没有sklearn库
>>> import sklearn.model_selection.train_test_split Traceback (most recent call last): File "", li
在阅读有关使用 python 的 LinearDiscriminantAnalysis 的过程中,我有两种不同的方法来实现它,可在此处获得, http://scikit-learn.org/stabl
我正在使用 sklearn,我注意到 sklearn.metrics.plot_confusion_matrix 的参数和 sklearn.metrics.confusion_matrix不一致。 p
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我想看看模型是否收敛于我的交叉验证。我如何增加或减少 sklearn.svm.SVC 中的时代? 目前: SVM_Model = SVC(gamma='auto') SVM_Model.fit(X_t
有人可以帮助我吗?我很难知道它们之间的区别 from sklearn.model_selection import train_test_split from sklearn.cross_valida
我需要提取在 sklearn.ensemble.BaggingClassifier 中训练的每个模型的概率。这样做的原因是为了估计 XGBoostClassifier 模型的不确定性。 为此,我创建了
无法使用 scikit-learn 0.19.1 导入 sklearn.qda 和 sklearn.lda 我得到: 导入错误:没有名为“sklearn.qda”的模块 导入错误:没有名为“sklea
我正在尝试在 google cloud ai 平台上创建一个版本,但找不到 impute 模块 No module named 'sklearn.impute._base; 'sklearn.impu
我在 PyQt5 中编写了一个 GUI,其中包括以下行 from sklearn.ensemble import RandomForestClassifier 。 遵循this answer中的建议,
我正在做一个 Kaggle 比赛,需要输入一些缺失的数据。我安装了最新的Anaconda(4.5.4)具有所有相关依赖项(即 scikit-learn (0.19.1) )。 当我尝试导入模块时,出现
在安装了所需的模块后,我正在尝试将imblearn导入到我的Python笔记本中。但是,我收到以下错误:。。附加信息:我使用的是一个用Visual Studio代码编写的虚拟环境。。我已经确定venv
我是一名优秀的程序员,十分优秀!