- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用卷积神经网络对图像进行分类。我经历过这个 tutorial关于深度学习并实现了给定的 code有很多修改。我添加了更多的卷积层和最大池化层,并更改了输入以接受 166x166 的输入。为了在训练后保存参数,我们在为每一层(ConvPool、FullyConnected 和 Softmax)分别定义的函数 save() 中使用了 cPickle.dump()。该函数在训练完成后在 sgd() 方法中针对所有层调用。在另一个程序中,softmax、全连接层和卷积层的参数是从另一个程序中的 .p pickled 文件加载回来的,除了我们没有调用 SGD 方法之外。问题是,我想打印 Softmax 层的 y_out(y_out 用于计算我们网络的精度),以获得图像类别的预测。但是在尝试之后
#print net.layers[-1].y_out.eval()
#x2 = net.layers[-1].y_out
#y2 = T.cast(x2, 'int32')
#print (pp(net.layers[-1].y_out))
#help(T.argmax)
#print net.layers[-1].y_out.shape.eval()
当我使用 eval() 函数获取 Tensor 变量的值时,我仍然得到 'argmax' 作为 Tensor 变量的值,' y_out 或其他错误 Missing Input Error。
因此需要帮助来打印单个测试图像的预测。
这是我们修改后network3.py(更名为net3.py)的代码:
"""net3.py
~~~~~~~~~~~~~~
A Theano-based program for training and running simple neural
networks.
Supports several layer types (fully connected, convolutional, max
pooling, softmax), and activation functions (sigmoid, tanh, and
rectified linear units, with more easily added).
When run on a CPU, this program is much faster than network.py and
network2.py. However, unlike network.py and network2.py it can also
be run on a GPU, which makes it faster still.
Because the code is based on Theano, the code is different in many
ways from network.py and network2.py. However, where possible I have
tried to maintain consistency with the earlier programs. In
particular, the API is similar to network2.py. Note that I have
focused on making the code simple, easily readable, and easily
modifiable. It is not optimized, and omits many desirable features.
This program incorporates ideas from the Theano documentation on
convolutional neural nets (notably,
http://deeplearning.net/tutorial/lenet.html ), from Misha Denil's
implementation of dropout (https://github.com/mdenil/dropout ), and
from Chris Olah (http://colah.github.io ).
"""
#tts refers to trying to save
#### Libraries
# Standard library
import json
import cPickle
import gzip
import load
# Third-party libraries
import numpy as np
import theano
import theano.tensor as T
from theano.tensor.nnet import conv
from theano.tensor.nnet import softmax
from theano.tensor import shared_randomstreams
from theano.tensor.signal import downsample
from theano import pp
# Activation functions for neurons
def linear(z): return z
def ReLU(z): return T.maximum(0.0, z)
from theano.tensor.nnet import sigmoid
from theano.tensor import tanh
'''
#### Constants
GPU = True
if GPU:
try: theano.config.device = 'gpu'
except: pass # it's already set
print "Trying to run under a GPU. If this is not desired, then modify "+\
"network3.py\nto set the GPU flag to False."
theano.config.floatX = 'float32'
else:
print "Running with a CPU. If this is not desired, then the modify "+\
"network3.py to set\nthe GPU flag to True."
'''
print "DEVICE IS:" ,theano.config.device
#### Load the MNIST data
def load_data_shared(filename="../data/mnist.pkl.gz"):
f = gzip.open(filename, 'rb')
training_data, validation_data, test_data = cPickle.load(f)
f.close()
def shared(data):
"""Place the data into shared variables. This allows Theano to copy
the data to the GPU, if one is available.
"""
shared_x = theano.shared(
np.asarray(data[0], dtype=theano.config.floatX), borrow=True)
shared_y = theano.shared(
np.asarray(data[1], dtype=theano.config.floatX), borrow=True)
return shared_x, T.cast(shared_y, "int32")
return [shared(training_data), shared(validation_data), shared(test_data)]
def load_mydata_shared():
test_data = load.load_data()
def shared(data):
"""Place the data into shared variables. This allows Theano to copy
the data to the GPU, if one is available.
"""
print "data:",data
shared_x = theano.shared(
np.asarray(data[0], dtype=theano.config.floatX))
shared_y = theano.shared(
np.asarray(data[1], dtype=theano.config.floatX))
return shared_x, T.cast(shared_y, "int32")
return [shared(test_data)]
#### Main class used to construct and train networks
class Network(object):
def __init__(self, layers, mini_batch_size):
"""Takes a list of `layers`, describing the network architecture, and
a value for the `mini_batch_size` to be used during training
by stochastic gradient descent.
"""
self.layers = layers
self.mini_batch_size = mini_batch_size
self.params = [param for layer in self.layers for param in layer.params]
self.x = T.matrix("x")
self.y = T.ivector("y")
# self.x1 = T.matrix('x')
# self.y1 = T.ivector('y')
# self.x2 = T.matrix('x')
# self.y2 = T.ivector('y')
init_layer = self.layers[0]
init_layer.set_inpt(self.x, self.x, self.mini_batch_size)
for j in xrange(1, len(self.layers)):
prev_layer, layer = self.layers[j-1], self.layers[j]
layer.set_inpt(
prev_layer.output, prev_layer.output_dropout, self.mini_batch_size)
self.output = self.layers[-1].output
self.output_dropout = self.layers[-1].output_dropout
print "class issss:",pp(T.cast(self.layers[-1].y_out.shape,'int32'))
def SGD(self, epochs, mini_batch_size, eta,
test_data, lmbda=0.0):
"""Train the network using mini-batch stochastic gradient descent."""
test_x, test_y = test_data
print "tex:",test_x
print "tey:",test_y
# compute number of minibatches for training, validation and testing
print "Epochs:"+str(epochs)
print "Mini-batch size:"+str(mini_batch_size)
print "Eta:"+str(eta)
num_test_batches = size(test_data)/mini_batch_size
# define the (regularized) cost function, symbolic gradients, and updates
l2_norm_squared = sum([(layer.w**2).sum() for layer in self.layers])
# define functions to train a mini-batch, and to compute the
# accuracy in validation and test mini-batches.
i = T.lscalar() # mini-batch index
test_mb_accuracy = theano.function(
[i], self.layers[-1].accuracy(self.y),
givens={
self.x:
test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],
self.y:
test_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
})
self.test_mb_predictions = theano.function(
[i], self.layers[-1].y_out,
givens={
self.x:
test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
})
test_accuracy = np.mean([test_mb_accuracy(j) for j in xrange(num_test_batches)])
print('The corresponding test accuracy is {0:.2%}'.format(test_accuracy))
print("Finished training network.")
print("Best validation accuracy of {0:.2%} obtained at iteration {1}".format(
best_validation_accuracy, best_iteration))
print("Corresponding test accuracy of {0:.2%}".format(test_accuracy))
#### Define layer types
class ConvPoolLayer(object):
"""Used to create a combination of a convolutional and a max-pooling
layer. A more sophisticated implementation would separate the
two, but for our purposes we'll always use them together, and it
simplifies the code, so it makes sense to combine them.
"""
def __init__(self, filter_shape, image_shape, poolsize=(2, 2),
activation_fn=ReLU):
"""`filter_shape` is a tuple of length 4, whose entries are the number
of filters, the number of input feature maps, the filter height, and the
filter width.
`image_shape` is a tuple of length 4, whose entries are the
mini-batch size, the number of input feature maps, the image
height, and the image width.
`poolsize` is a tuple of length 2, whose entries are the y and
x pooling sizes.
"""
self.filter_shape = filter_shape
self.image_shape = image_shape
self.poolsize = poolsize
self.activation_fn=activation_fn
# initialize weights and biases
n_out = (filter_shape[0]*np.prod(filter_shape[2:])/np.prod(poolsize))
self.w = theano.shared(
np.asarray(
np.random.normal(loc=0, scale=np.sqrt(1.0/n_out), size=filter_shape),
dtype=theano.config.floatX),
borrow=True)
self.b = theano.shared(
np.asarray(
np.random.normal(loc=0, scale=1.0, size=(filter_shape[0],)),
dtype=theano.config.floatX),
borrow=True)
self.load()
self.params = [self.w, self.b]
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape(self.image_shape)
conv_out = conv.conv2d(
input=self.inpt, filters=self.w, filter_shape=self.filter_shape,
image_shape=self.image_shape)
pooled_out = downsample.max_pool_2d(
input=conv_out, ds=self.poolsize, ignore_border=True)
self.output = self.activation_fn(
pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.output_dropout = self.output # no dropout in the convolutional layers
def load(self):
"""Save the neural network to the file ``filename``."""
save_file=open('/home/sweta/BE_PROJECT/tryingtosave/cl.p')
self.w.set_value(cPickle.load(save_file),borrow=True)
self.b.set_value(cPickle.load(save_file),borrow=True)
class FullyConnectedLayer(object):
def __init__(self, n_in, n_out, activation_fn=ReLU, p_dropout=0.5):
self.n_in = n_in
self.n_out = n_out
self.activation_fn = activation_fn
self.p_dropout = p_dropout
# Initialize weights and biases
self.w = theano.shared(
np.asarray(
np.random.normal(
loc=0.0, scale=np.sqrt(1.0/n_out), size=(n_in, n_out)),
dtype=theano.config.floatX),
name='w', borrow=True)
self.b = theano.shared(
np.asarray(np.random.normal(loc=0.0, scale=1.0, size=(n_out,)),
dtype=theano.config.floatX),
name='b', borrow=True)
self.load()
self.params = [self.w, self.b]
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape((mini_batch_size, self.n_in))
self.output = self.activation_fn(
(1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)
self.y_out = T.argmax(self.output, axis=1)
self.inpt_dropout = dropout_layer(
inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
self.output_dropout = self.activation_fn(
T.dot(self.inpt_dropout, self.w) + self.b)
def accuracy(self, y):
"Return the accuracy for the mini-batch."
return T.mean(T.eq(y, self.y_out))
def load(self):
"""Save the neural network to the file ``filename``."""
save_file=open('/home/sweta/BE_PROJECT/tryingtosave/fcl.p')
self.w.set_value(cPickle.load(save_file),borrow=True)
self.b.set_value(cPickle.load(save_file),borrow=True)
class SoftmaxLayer(object):
def __init__(self, n_in, n_out, p_dropout=0.5):
self.n_in = n_in
self.n_out = n_out
self.p_dropout = p_dropout
# Initialize weights and biases
self.w = theano.shared(
np.zeros((n_in, n_out), dtype=theano.config.floatX),
name='w', borrow=True)
self.b = theano.shared(
np.zeros((n_out,), dtype=theano.config.floatX),
name='b', borrow=True)
self.load()
self.params = [self.w, self.b]
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape((mini_batch_size, self.n_in))
self.output = softmax((1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)
self.y_out = T.argmax(self.output, axis=1)
self.inpt_dropout = dropout_layer(
inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
self.output_dropout = softmax(T.dot(self.inpt_dropout, self.w) + self.b)
def cost(self, net):
"Return the log-likelihood cost."
return -T.mean(T.log(self.output_dropout)[T.arange(net.y.shape[0]), net.y])
def accuracy(self, y):
"Return the accuracy for the mini-batch."
print "class is:", self.y_out
return T.mean(T.eq(y, self.y_out))
def load(self):
"""Save the neural network to the file ``filename``."""
save_file=open('/home/sweta/BE_PROJECT/tryingtosave/sml.p')
self.w.set_value(cPickle.load(save_file),borrow=True)
self.b.set_value(cPickle.load(save_file),borrow=True)
#### Miscellanea
def size(data):
"Return the size of the dataset `data`."
return data[0].get_value(borrow=True).shape[0]
def dropout_layer(layer, p_dropout):
srng = shared_randomstreams.RandomStreams(
np.random.RandomState(0).randint(999999))
mask = srng.binomial(n=1, p=1-p_dropout, size=layer.shape)
return layer*T.cast(mask, theano.config.floatX)
主要代码为:
import net3
import load
import theano.tensor as T
from theano import pp
from net3 import Network
from net3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer
test_data = net3.load_mydata_shared()
mini_batch_size = 10
net = Network([ ConvPoolLayer(image_shape=(mini_batch_size, 1, 166, 166),filter_shape=(5, 1, 5,5), poolsize=(2, 2)),
ConvPoolLayer(image_shape=(mini_batch_size, 5, 81, 81),filter_shape=(10, 5, 6,6), poolsize=(2, 2)),
ConvPoolLayer(image_shape=(mini_batch_size, 10, 38, 38),filter_shape=(15, 10, 5, 5 ),poolsize=(2, 2)),
ConvPoolLayer(image_shape=(mini_batch_size, 15, 17, 17),filter_shape=(20, 15, 4, 4 ),poolsize=(2, 2)),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 7, 7),filter_shape=(40, 20, 2, 2 ),poolsize=(2, 2)),
FullyConnectedLayer(n_in=40*3*3, n_out=100),SoftmaxLayer(n_in=100, n_out=3)], mini_batch_size)
#print net.layers[-1].y_out.eval()
#x2 = net.layers[-1].y_out
#y2 = T.cast(x2, 'int32')
#print (pp(net.layers[-1].y_out))
#help(T.argmax)
#print net.layers[-1].y_out.shape.eval()
#net.SGD( 2, mini_batch_size, 0.03 ,test_data)
加载.mat形式的单张测试图片代码如下:
"""
mnist_loader
~~~~~~~~~~~~
A library to load the MNIST image data. For details of the data
structures that are returned, see the doc strings for ``load_data``
and ``load_data_wrapper``. In practice, ``load_data_wrapper`` is the
function usually called by our neural network code.
"""
#### Libraries
# Standard library
import cPickle
import gzip
# Third-party libraries
import numpy as np
import scipy.io as sio
from random import shuffle
def load_data():
matx = sio.loadmat('exact_one_x.mat')
datax = matx['X']
datax=datax.transpose()
print datax.shape
maty = sio.loadmat('one_y.mat')
datay = maty['M']
datay=datay.transpose()
print datay.shape
test_data = (datax,datay[0])
return ( test_data)
def load_data_wrapper():
"""Return a tuple containing ``(training_data, validation_data,
test_data)``. Based on ``load_data``, but the format is more
convenient for use in our implementation of neural networks.
In particular, ``training_data`` is a list containing 50,000
2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray
containing the input image. ``y`` is a 10-dimensional
numpy.ndarray representing the unit vector corresponding to the
correct digit for ``x``.
``validation_data`` and ``test_data`` are lists containing 10,000
2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional
numpy.ndarry containing the input image, and ``y`` is the
corresponding classification, i.e., the digit values (integers)
corresponding to ``x``.
Obviously, this means we're using slightly different formats for
the training data and the validation / test data. These formats
turn out to be the most convenient for use in our neural network
code."""
tr_d, va_d, te_d = load_data()
training_inputs = [np.reshape(x, (27556, 1)) for x in tr_d[0]]
training_results = [vectorized_result(y) for y in tr_d[1]]
training_data = zip(training_inputs, training_results)
shuffle(training_data)
validation_inputs = [np.reshape(x, (27556, 1)) for x in va_d[0]]
validation_data = zip(validation_inputs, va_d[1])
test_inputs = [np.reshape(x, (27556, 1)) for x in te_d[0]]
test_data = zip(test_inputs, te_d[1])
return (training_data, validation_data, test_data)
def vectorized_result(j):
"""Return a 10-dimensional unit vector with a 1.0 in the jth
position and zeroes elsewhere. This is used to convert a digit
(0...9) into a corresponding desired output from the neural
network."""
e = np.zeros((3, 1))
e[j] = 1.0
return e
最佳答案
您可以使用已经在您的代码中定义的 test_mb_predictions 函数。您只需要在测试代码中加载单个图像,批量大小为 1(而不是 10),并打印 test_mb_predictions 返回的类。
关于python - 使用经过训练的 ConvNet 的参数预测图像类别,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35726182/
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 9 个月前关闭。 Improve
我使用 partykit打包并遇到以下错误消息: Error in matrix(0, nrow = mi, ncol = nl) : invalid 'nrow' value (too large
我一直在尝试寻找一个量表或分类指标,为 VADER 情绪分析分配一些情感程度,而不仅仅是积极、消极或中性。如果有人可以分享他们的观点或资源来帮助按以下方式对 VADER 复合分数进行分类,我将非常感激
伙计们,我想自动循环..但我不知道是我放错了 while 还是循环错了? 我的数据库 标签:kt_barang kd_kategori | nama_kategori 1
我正在创建一个列出本地企业并按类别、子类别和关键字对它们进行分组的应用程序。以下是企业排序规则: 一个企业可以属于多个类别和子类别 一个企业可以有多个关键字 并非每个类别都有子类别,但有子类别的只有两
我有一系列单词 - 我的刺激 - 它们显示在屏幕上。然而,每个词都有另一个“条件”,即它们是类别 A、类别 B 或类别 C。这可能很简单,但我找不到答案并坚持下去。我的最终目标是在每次运行脚本时将类别
我正在使用 Laravel 5.5 和 MySql。如果不向 Services 表中添加 subCategoryID 列,我无法弄清楚如何将类别和子类别与服务相关联。 目前这是我的表结构 服务类别 i
我有两个部分/类别结构的链接表。 the section table structure id sec_title 1 section 1 2 section 2 the category str
我有一个类层次结构如下 @interface PTLDatasource : NSObject ... @interface PTLFetchedDatasource : PTLDatasource
我有一个 DataFrame df 一列,category 使用以下代码创建: import pandas as pd import random as rand from string import
我经常在多个类中设置获取请求以从核心数据(加上一些其他结果)中检索“allRecipes”或“lastModifiedDate”。 为此使用专门的类别 NSManagedObjectContext+R
可以在 Objective C 中创建类别之间的依赖关系吗?也在类别和它们的基类之间? 我知道在运行时应该没有区别,它们可能只是在编译时合并在一起。例如,假设我将 B 类分解为: B(base cla
这个问题在这里已经有了答案: 关闭 10 年前。
example img of a category selection by user 嘿,我正在尝试设置一个选择,用户必须选择一个类别和第二个类别,但我不知道如何获取他单击的信息。用户单击类别后,它
尝试将投资组合库添加到我正在制作的自定义 wp 主题中。我已经筋疲力尽地试图寻找甚至可以修改一些的解决方案和插件。我认为我在寻找解决方案时遇到的一个问题是我不完全确定哪些搜索词可以帮助我找到与我想要实
当我查看 Cocoa Touch API 时,我可以在同一个头文件中找到一些与类别一起声明的类,例如 @interface NSArray : NSObject @property (readonl
我的 log4j.properties 中有以下内容 log4j.rootLogger = debug, stdout, fileLog log4j.appender.stdout = org.apa
如果我在类中添加类别方法,比如NSXMLNode: @interface NSXMLNode (mycat) - (void)myFunc; @end NSXMLNode 的子类,例如 NSXMLEl
先说场景,wordpress的分类结构是这样的 Level 1: Top Level 2: -Nextme_1 Level 3: --Nextme_2 --Nextme_3 Leve
我有一个解析网络,现在我想浏览标签,或显示图表。我怎样才能得到图表?或者在树中导航。显示第一步然后其他等。并了解这棵树是如何 build 的。 import urllib from lxml impo
我是一名优秀的程序员,十分优秀!