gpt4 book ai didi

python - 从 S3 将嵌套文本文件读入 spark 时出现内存错误

转载 作者:行者123 更新时间:2023-11-28 19:12:16 25 4
gpt4 key购买 nike

我正在尝试将大约一百万个压缩文本文件从 S3 读取到 spark 中。每个文件的压缩大小在 50 MB 到 80 MB 之间。总共约有 6.5 TB 的数据。

不幸的是,我遇到了一个我不知道如何解决的内存不足异常。像这样简单的东西:

raw_file_list = subprocess.Popen("aws s3 ls --recursive s3://my-bucket/export/", shell=True, stdout=subprocess.PIPE).stdout.read().strip().split('\n')
cleaned_names = ["s3://my-bucket/" + f.split()[3] for f in raw_file_list if not f.endswith('_SUCCESS')]
dat = sc.textFile(','.join(cleaned_names))
dat.count()

产量:

 ---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-22-8ce3c7d1073e> in <module>() ----> 1 dat.count()

/tmp/spark-tmp-lminer/spark-1.6.1-bin-hadoop2.6/python/pyspark/rdd.pyc in count(self)
1002 3
1003 """
-> 1004 return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
1005
1006 def stats(self):

/tmp/spark-tmp-lminer/spark-1.6.1-bin-hadoop2.6/python/pyspark/rdd.pyc in sum(self)
993 6.0
994 """
--> 995 return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
996
997 def count(self):

/tmp/spark-tmp-lminer/spark-1.6.1-bin-hadoop2.6/python/pyspark/rdd.pyc in fold(self, zeroValue, op)
867 # zeroValue provided to each partition is unique from the one provided
868 # to the final reduce call
--> 869 vals = self.mapPartitions(func).collect()
870 return reduce(op, vals, zeroValue)
871

/tmp/spark-tmp-lminer/spark-1.6.1-bin-hadoop2.6/python/pyspark/rdd.pyc in collect(self)
769 """
770 with SCCallSiteSync(self.context) as css:
--> 771 port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
772 return list(_load_from_socket(port, self._jrdd_deserializer))
773

/tmp/spark-tmp-lminer/spark-1.6.1-bin-hadoop2.6/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
811 answer = self.gateway_client.send_command(command)
812 return_value = get_return_value(
--> 813 answer, self.gateway_client, self.target_id, self.name)
814
815 for temp_arg in temp_args:

/tmp/spark-tmp-lminer/spark-1.6.1-bin-hadoop2.6/python/pyspark/sql/utils.pyc in deco(*a, **kw)
43 def deco(*a, **kw):
44 try:
---> 45 return f(*a, **kw)
46 except py4j.protocol.Py4JJavaError as e:
47 s = e.java_exception.toString()

/tmp/spark-tmp-lminer/spark-1.6.1-bin-hadoop2.6/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
306 raise Py4JJavaError(
307 "An error occurred while calling {0}{1}{2}.\n".
--> 308 format(target_id, ".", name), value)
309 else:
310 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: java.lang.OutOfMemoryError: GC overhead limit exceeded

更新:

部分问题似乎已经通过这个post解决了.似乎 spark 在从 S3 中处理这么多文件时遇到了困难。更新了错误,使其现在仅反射(reflect)内存问题。

最佳答案

问题是文件太多了。解决方案似乎是通过读取文件的子集并将它们合并为较小的数量来减少分区的数量。但是您不能使分区太大:500 - 1000 MB 的文件会导致它们自己的问题。

关于python - 从 S3 将嵌套文本文件读入 spark 时出现内存错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38576813/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com