- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 shuffle_batch()
函数将标签与 tensorflow 中的图像匹配,但是当我开始使用shuffle_batch() 函数。
使用shuffle_batch函数时如何避免queue out of range错误?
以下代码在前 90 步左右运行良好,准确性不断提高,直到引发错误。
# Global Parameters
# Image Size
training_size = 1387
img_height = 64
img_width = 64
# File stream
batch_size = 128
# Training parameter
learning_rate = 0.001
training_iters = 100
keep_prob = 0.5 #dropout keep prob
display_step = 10
AdamOptimizer = 1
GradientDescentOptimizer = 0
# Filepath
csv_filepath = r'C:/Users/Jeffy/OneDrive/Course\NMDA\retinaProject\label.csv'
image_filepath = 'Image_P/'
import tensorflow as tf
# =============================================================================
# Read input data
# load csv content
csv_path = tf.train.string_input_producer(['label_3D.csv'])
textReader = tf.TextLineReader()
_, csv_content = textReader.read(csv_path)
im_name, col_2, col_3, col_4 = tf.decode_csv(csv_content, record_defaults=[[""], [1], [1], [1]])
label = tf.pack([col_2, col_3, col_4])
label_float32 = tf.cast(label, tf.float32)
# load images
im_content = tf.read_file(image_filepath + im_name+'.jpeg')
image = tf.image.decode_jpeg(im_content, channels=3)
image_float32 = tf.cast(image, tf.float32)/255
# Generate Batch
batch_shape = ((img_height, img_width, 3),(3))
images_batch, labels_batch = tf.train.shuffle_batch([image_float32, label_float32],
batch_size = batch_size,
capacity = batch_size * 50,
min_after_dequeue = batch_size * 10,
shapes = batch_shape)
# =============================================================================
# Construct Network
# define functions
def weight_varible(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# paras
W_conv1 = weight_varible([5, 5, 3, 32])
b_conv1 = bias_variable([32])
# conv layer-1
h_conv1 = tf.nn.relu(conv2d(images_batch, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# conv layer-2
W_conv2 = weight_varible([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# full connection
W_fc1 = weight_varible([16 * 16 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 16 * 16 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# dropout
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# output layer: softmax
W_fc2 = weight_varible([1024, 3])
b_fc2 = bias_variable([3])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# model training
cross_entropy = -tf.reduce_sum(labels_batch * tf.log(y_conv))
if GradientDescentOptimizer:
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
else:
if AdamOptimizer:
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(labels_batch, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Start file queue
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
sess.run([images_batch, labels_batch])
coord.request_stop()
coord.join(threads)
for i in range(training_iters):
# display the result on console
if i % display_step == 0:
train_accuacy = accuracy.eval()
print("step %d, training accuracy %g"%(i, train_accuacy))
# run the model
train_step.run()
print("test accuracy %g"%(accuracy.eval()))
更新后的代码在第 90 步左右调用错误:
step 0, training accuracy 0.5625
step 10, training accuracy 0.6875
step 20, training accuracy 0.703125
step 30, training accuracy 0.625
step 40, training accuracy 0.65625
step 50, training accuracy 0.6875
step 60, training accuracy 0.6875
step 70, training accuracy 0.734375
step 80, training accuracy 0.632812
step 90, training accuracy 0.695312
然后
OutOfRangeError: RandomShuffleQueue '_24_shuffle_batch_3/random_shuffle_queue' is closed and has insufficient elements (requested 128, current size 1)
[[Node: shuffle_batch_3 = QueueDequeueMany[_class=["loc:@shuffle_batch_3/random_shuffle_queue"], component_types=[DT_FLOAT, DT_FLOAT], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](shuffle_batch_3/random_shuffle_queue, shuffle_batch_3/n)]]
Caused by op 'shuffle_batch_3', defined at:
File "C:\Users\Jeffy\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 223, in <module>
main()
......
当我使用 tf.batch() 将标签与图像匹配时,为什么图像标签会粘在第一个样本上?在 Standy 和我的 friend Dong 的大力帮助下,我的老问题得到了解决。非常感谢他们!
1.我的问题
将“shuffle_batch()”函数放在位置 1 或位置 2 的什么位置? (您可以在下面的代码的 tf.session() 部分中找到它)
如何修改代码使 batch 成功地结合图像和标签,而不是停留在第一个示例上?
2.csv文件
图像名称和相关标签以下列格式(withour header)存储在 label.csv 中:
11219_right,0,1,0
15502_left,0,0,0
14481_right,0,1,0
11032_right,0,0,1
19322_right,0,0,0
......
3.源代码
代码的目的是使用 RNN 作为图像分类器。
CNN结构基于tensorflow示例文件。
您可以专注于读取数据部分并启动图表部分。
# Global Parameters
# Image Size
training_size = 1387
img_height = 64
img_width = 64
# File stream
batch_size = 128
# Training parameter
learning_rate = 0.001
training_iters = 100
keep_prob = 0.5 #dropout keep prob
display_step = 10
AdamOptimizer = 1
GradientDescentOptimizer = 0
# Filepath
csv_filepath = r'C:/Users/Jeffy/OneDrive/Course\NMDA\retinaProject\label.csv'
image_filepath = 'Image_P/'
# import library
import tensorflow as tf
import numpy as np
#=============================================================================
# Read input data
# load csv content
csv_path = tf.train.string_input_producer(['label.csv'])
textReader = tf.TextLineReader()
_, csv_content = textReader.read(csv_path)
im_name, label = tf.decode_csv(csv_content, record_defaults=[[""], [1]])
# load images
im_content = tf.read_file(image_filepath + im_name+'.jpeg')
image = tf.image.decode_jpeg(im_content, channels=3)
def label_3D (label_num):
label_3D = np.zeros(3)
if label_num == 0:
label_3D[0] = 1
else:
if label_num == 3:
label_3D[1] = 1
else: # label_num == 4
label_3D[2] = 1
return label_3D
# =============================================================================
# Construct Network(you can skip this part)
# define functions
def weight_varible(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# paras
W_conv1 = weight_varible([5, 5, 3, 32])
b_conv1 = bias_variable([32])
# conv layer-1
x = tf.Variable(tf.zeros([batch_size, img_width, img_height, 3]))
h_conv1 = tf.nn.relu(conv2d(x, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# conv layer-2
W_conv2 = weight_varible([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# full connection
W_fc1 = weight_varible([16 * 16 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 16 * 16 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# dropout
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# output layer: softmax
W_fc2 = weight_varible([1024, 3])
b_fc2 = bias_variable([3])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
y_ = tf.Variable(tf.zeros([batch_size, 3]))
# model training
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
if GradientDescentOptimizer:
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
else:
if AdamOptimizer:
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# ==========================================================================
# Lauch the graph
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Start file queue
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
images, labels = sess.run([image, label])
#position1 for tf.train.shuffle_batch() function
coord.request_stop()
coord.join(threads)
for i in range(training_iters):
#position2 for tf.train.shuffle_batch() function
batch = tf.train.shuffle_batch([images,label_3D(labels)], batch_size=batch_size,
capacity = batch_size * 50,
min_after_dequeue = batch_size * 10,
num_threads = 1)
if i % display_step == 0:
x = batch[0]
y_ = batch[1]
train_accuacy = accuracy.eval()
print("step %d, training accuracy %g"%(i, train_accuacy))
x= batch[0]
y_ = batch[1]
train_step.run()
`
4.运行结果 - 在 IPython 控制台中
- 在变量探索中
第 0 步,训练精度 0.226562
step 10,训练准确率1
第20步,训练精度1
第30步,训练精度1
步骤40,训练精度1
变量labels和images不变,作为label和image第一个例子,保存在label.csv文件的第一行
因此,我推断读取文件队列卡在了第一行,导致CNN以1的精度快速收敛。
最佳答案
shuffle_batch
接受张量并返回一个张量,因此它是一个tensorflow op,应该放在Graph中。 shuffle_batch docs
我会在您解码单个图像后立即放置它:
image = tf.image.decode_jpeg(im_content, channels=3)
images_batch, labels_batch = tf.train.shuffle_batch([image, label], batch_size, batch_size * 50, batch_size * 10)
# images_batch is now Tensor of shape (batch_size, height, weight, channels)
...
h_conv1 = tf.nn.relu(conv2d(images_batch, W_conv1) + b_conv1)
您现在不需要变量 x
和 y_
,并且您在使用 tf.train.shuffle_batch 时不需要手动分配输入
。
tf.train.shuffle_batch
接受单个示例的张量并生成整个批处理,这似乎违反直觉,但请记住,您提供给此 op 的张量来自队列,因此 tf .train.shuffle_batch 可以“等待”多个元素(在幕后它实际上使用另一个队列来洗牌和存储中间元素,shuffle_batch 实现是 here )
关于python - 如何使用 shuffle_batch() 函数避免超出范围错误?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41519081/
我注意到,如果我将训练数据加载到内存中并将其作为 numpy 数组提供到图中,与使用相同大小的 shuffle 批次相比,速度会有很大差异,我的数据有大约 1000 个实例。 使用内存 1000 次迭
import tensorflow as tf sess = tf.Session() def add_to_batch(image): print('Adding to batch')
更新问题 我正在尝试使用 shuffle_batch() 函数将标签与 tensorflow 中的图像匹配,但是当我开始使用shuffle_batch() 函数。 1。我更新的问题 使用shuffle
它是在一个时期内进行一次洗牌,还是其他? tf.train.shuffle_batch 和 tf.train.batch 有什么区别? 有人可以解释一下吗?谢谢。 最佳答案 首先看一下文档( http
我正在尝试使用 TensorFlow 干净的方式 (tf.train.shuffle_batch) 处理我的输入数据,大部分代码是我从教程中收集的,并稍作修改,例如 decode_jpeg 函数。 s
在 Tensorflow tutorial ,它给出了以下关于 tf.train.shuffle_batch() 的示例: # Creates batches of 32 images and 32
我有一个训练数据文件,大约有 100K 行,并且我在每个训练步骤上运行一个简单的 tf.train.GradientDescentOptimizer。该设置本质上直接取自 Tensorflow 的 M
我有一个 tfrecords 文件,我希望从中创建批量数据。我正在使用 tf.train.shuffle_batch() 来创建单个批处理。在我的训练中,我想调用批处理并通过它们。这就是我被困住的地方
查看两个带有参数的函数签名 tf.train.shuffle_batch_join( tensors_list, batch_size, capacity, min_after_dequeue, se
我使用 Binary data训练 DNN。 但是 tf.train.shuffle_batch 和 tf.train.batch 让我很困惑。 这是我的代码,我将对其进行一些测试。 首先Using_
我正在尝试使用 tf.train.shuffle_batch 来使用 TensorFlow 1.0 使用 TFRecord 文件中的批量数据。相关功能有: def tfrecord_to_graph_
我是一名优秀的程序员,十分优秀!