- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在寻找是否有办法将壁橱时间选择为特定时间。我有以下内容。该文件包含 10 年的数据,我已将其缩小到我想要保留的一些时间序列。
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plt
from matplotlib.pyplot import *
import datetime
import numpy as np
dateparse = lambda x: pd.datetime.strptime(x, "%d:%m:%Y %H:%M:%S")
aeronet = pd.read_csv('somefile', skiprows = 4, na_values = ['N/A'], parse_dates={'times':[0,1]}, date_parser=dateparse)
aeronet = aeronet.set_index('times')
del aeronet['Julian_Day']
aeronet.between_time('06:00:00', '07:00:00'), aeronet.between_time('12:00:00', '13:00:00')
我选择了其中的一个片段。有没有这样一种方法可以选择最接近时间 06 或 12 的内容并丢弃/忽略 pandas 系列中的其余部分,并对整个文件执行此操作?
times AOT_1640 AOT_1020 AOT_870 AOT_675 AOT_667 AOT_555 ...
2000-08-07 06:49:10 NaN 0.380411 0.406041 0.445789 NaN NaN
2000-08-07 06:57:36 NaN 0.353378 0.377769 0.420168 NaN NaN
2000-08-08 06:31:00 NaN 0.322402 0.338164 0.364679 NaN NaN
2000-08-08 06:33:28 NaN 0.337819 0.353995 0.381201 NaN NaN
2000-08-08 06:36:26 NaN 0.347656 0.361839 0.390342 NaN NaN
2000-08-08 06:51:50 NaN 0.306449 0.325672 0.351885 NaN NaN
2000-08-08 06:54:23 NaN 0.336512 0.355386 0.380230 NaN NaN
2000-08-08 06:57:20 NaN 0.330028 0.345679 0.373780 NaN NaN
2000-08-09 06:34:56 NaN 0.290533 0.306911 0.336597 NaN NaN
2000-08-09 06:41:53 NaN 0.294413 0.311553 0.343473 NaN NaN
2000-08-09 06:49:45 NaN 0.311042 0.332054 0.360999 NaN NaN
2000-08-09 06:52:15 NaN 0.319396 0.339932 0.369617 NaN NaN
2000-08-09 06:55:20 NaN 0.327440 0.349084 0.378345 NaN NaN
2000-08-09 06:58:23 NaN 0.323247 0.345273 0.373879 NaN NaN
2000-08-12 06:30:01 NaN 0.465173 0.471528 0.483079 NaN NaN
2000-08-12 06:33:05 NaN 0.460013 0.465674 0.479500 NaN NaN
2000-08-12 06:35:59 NaN 0.433161 0.438488 0.453779 NaN NaN
2000-08-12 06:42:12 NaN 0.406479 0.415580 0.432160 NaN NaN
2000-08-12 06:50:06 NaN 0.414227 0.424330 0.439448 NaN NaN
2000-08-12 06:57:21 NaN 0.396034 0.404258 0.423866 NaN NaN
2000-08-12 06:59:47 NaN 0.372097 0.380798 0.401600 NaN NaN
[6200 rows x 42 columns]
...
times AOT_1640 AOT_1020 AOT_870 AOT_675 AOT_667 AOT_555 ...
2000-01-01 12:23:54 NaN 0.513307 0.557325 0.653497 NaN NaN
2000-01-03 12:24:49 NaN 0.439142 0.494118 0.593997 NaN NaN
2000-01-03 12:39:49 NaN 0.429130 0.477874 0.577334 NaN NaN
2000-01-03 12:54:48 NaN 0.437720 0.489006 0.586224 NaN NaN
2000-01-04 12:10:30 NaN 0.325203 0.362335 0.426348 NaN NaN
2000-01-04 12:25:15 NaN 0.323978 0.356274 0.423620 NaN NaN
2000-01-04 12:40:15 NaN 0.325356 0.361138 0.427271 NaN NaN
2000-01-04 12:55:14 NaN 0.326595 0.363519 0.431527 NaN NaN
2000-01-06 12:11:08 NaN 0.282777 0.307676 0.369811 NaN NaN
2000-01-06 12:26:09 NaN 0.285853 0.314178 0.374832 NaN NaN
2000-01-06 12:41:08 NaN 0.258836 0.289263 0.346880 NaN NaN
2000-01-08 12:12:04 NaN 0.165473 0.185018 0.235770 NaN NaN
2000-01-08 12:42:01 NaN 0.143540 0.164647 0.216335 NaN NaN
2000-01-08 12:57:01 NaN 0.142760 0.164886 0.215461 NaN NaN
2000-01-10 12:12:52 NaN 0.192453 0.225909 0.310540 NaN NaN
2000-01-10 12:27:53 NaN 0.202532 0.238400 0.322692 NaN NaN
2000-01-10 12:42:52 NaN 0.199996 0.235561 0.320756 NaN NaN
2000-01-10 12:57:52 NaN 0.208046 0.245054 0.331214 NaN NaN
2000-01-11 12:13:19 NaN 0.588879 0.646470 0.750459 NaN NaN
2000-01-11 12:28:17 NaN 0.621813 0.680442 0.788457 NaN NaN
2000-01-11 12:43:17 NaN 0.626547 0.685880 0.790631 NaN NaN
2000-01-11 12:58:16 NaN 0.631142 0.689125 0.796060 NaN NaN
2000-01-12 12:28:42 NaN 0.535105 0.584593 0.688904 NaN NaN
2000-01-12 12:43:41 NaN 0.518697 0.571025 0.676406 NaN NaN
2000-01-12 12:58:40 NaN 0.528318 0.583229 0.687795 NaN NaN
2000-01-13 12:14:20 NaN 0.382645 0.419463 0.496089 NaN NaN
2000-01-13 12:29:05 NaN 0.376186 0.414921 0.491920 NaN NaN
2000-01-13 12:44:05 NaN 0.387845 0.424576 0.501968 NaN NaN
2000-01-13 12:59:04 NaN 0.386237 0.423254 0.503163 NaN NaN
2000-01-14 12:14:43 NaN 0.400024 0.425522 0.485719 NaN NaN
[6672 rows x 42 columns])
当我打印出来时,aeronet dataframe 看起来像这样吗?我希望仍然对其进行一些计算或将其导出到 excel。
times AOT_1640 AOT_1020 AOT_870 AOT_675 AOT_667 AOT_555 ...
2000-08-07 06:49:10 NaN 0.380411 0.406041 0.445789 NaN NaN
2000-08-08 06:31:00 NaN 0.322402 0.338164 0.364679 NaN NaN
2000-08-09 06:34:56 NaN 0.290533 0.306911 0.336597 NaN NaN
2000-08-12 06:30:01 NaN 0.465173 0.471528 0.483079 NaN NaN
....
2000-01-01 12:23:54 NaN 0.513307 0.557325 0.653497 NaN NaN
2000-01-03 12:24:49 NaN 0.439142 0.494118 0.593997 NaN NaN
2000-01-04 12:10:30 NaN 0.325203 0.362335 0.426348 NaN NaN
2000-01-06 12:11:08 NaN 0.282777 0.307676 0.369811 NaN NaN
2000-01-08 12:12:04 NaN 0.165473 0.185018 0.235770 NaN NaN
2000-01-10 12:12:52 NaN 0.192453 0.225909 0.310540 NaN NaN
2000-01-11 12:13:19 NaN 0.588879 0.646470 0.750459 NaN NaN
2000-01-12 12:28:42 NaN 0.535105 0.584593 0.688904 NaN NaN
2000-01-13 12:14:20 NaN 0.382645 0.419463 0.496089 NaN NaN
2000-01-14 12:14:43 NaN 0.400024 0.425522 0.485719 NaN NaN
最佳答案
这可能是一种更有效的方法,但我认为这可以完成工作。
首先,添加日期和时间字段:
aeronet['date'] = aeronet.times.dt.date
aeronet['time'] = aeronet.times.dt.time
现在,aeronet.date.unique() 会为您提供唯一日期的列表。您稍后会需要它。
dates = aeronet.date.unique()
创建一个列,给出距早上 6 点的绝对距离
from datetime import date, datetime, time
sixam = time(6,0,0,0)
def fromsix(time):
abs(datetime.combine(date.min, time) - datetime.combine(date.min, sixam))
aeronet['fromsix'] = aeronet.time.apply(fromsix)
datetime.combine 是必要的,因为显然你不能只减去两次。
现在,终于,
pd.concat([aeronet[aeronet.date == date][aeronet.fromsix == aeronet[aeronet.date == date].fromsix.min()] for date in dates])
使用列表推导将数据框分割成单独的日期,找到与 sixam 距离最小的元素,并将它们连接在一起。
关于python - 在python pandas中选择最接近某个时间的时间,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45424669/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!