- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我一直在学习 Google 的机器学习速成类(class),目前正在学习“TensorFlow 的第一步”部分。我想在我的机器上运行示例,并不断收到错误消息:
ValueError: Could not find trained model in model_dir: C:\Users\Username\AppData
\Local\Temp\tmpowu7j37s.
每次运行脚本时最后的文件夹都不一样。所以它正在为 model_dir 创建一个目录,但随后什么也不放在那里,或者把我的模型放在那里,它在 predict()
方法被调用时被删除。如果我尝试在 estimator.LinearRegressor init 方法中定义 model_dir 并将 predict()
方法的 checkpoint_path 设置为同一目录,它会告诉我无论我指向何处,在 C 或到 C:\Users 等我还应该提到我正在 Anaconda 环境中执行。非常感谢任何帮助!
import math
from IPython import display
from matplotlib import cm
from matplotlib import gridspec
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
from sklearn import metrics
import tensorflow as tf
from tensorflow.python.data import Dataset
tf.logging.set_verbosity(tf.logging.ERROR)
pd.options.display.max_rows = 10
pd.options.display.float_format = '{:.1f}'.format
#LOAD Dataset
california_housing_dataframe = pd.read_csv("california_housing_train.csv", sep=",")
#Randomize data (to avoid ordering bias) and div a clumn by 1000 to get to a learning rate we usually work with
california_housing_dataframe = california_housing_dataframe.reindex(
np.random.permutation(california_housing_dataframe.index))
california_housing_dataframe["median_house_value"] /= 1000.0
print(california_housing_dataframe) #print top and botton 5 rows (see max rows 10 above)
#examine data briefly
print(california_housing_dataframe.describe())
#________________________________________________________________________________________
# Define the input feature: total_rooms.
my_feature = california_housing_dataframe[["total_rooms"]]
# Configure a numeric feature column for total_rooms.
feature_columns = [tf.feature_column.numeric_column("total_rooms")]
# Define the label.
targets = california_housing_dataframe["median_house_value"]
#__________________________________________________________________________________________
# Use gradient descent as the optimizer for training the model.
my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0000001)
my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)
# Configure the linear regression model with our feature columns and optimizer.
# Set a learning rate of 0.0000001 for Gradient Descent.
linear_regressor = tf.estimator.LinearRegressor(
feature_columns=feature_columns,
optimizer=my_optimizer
)
#______________________________________________________________________________________________
def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):
"""Trains a linear regression model of one feature.
Args:
features: pandas DataFrame of features
targets: pandas DataFrame of targets
batch_size: Size of batches to be passed to the model
shuffle: True or False. Whether to shuffle the data.
num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely
Returns:
Tuple of (features, labels) for next data batch
"""
# Convert pandas data into a dict of np arrays.
features = {key:np.array(value) for key,value in dict(features).items()}
# Construct a dataset, and configure batching/repeating
ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit
ds = ds.batch(batch_size).repeat(num_epochs)
# Shuffle the data, if specified
if shuffle:
ds = ds.shuffle(buffer_size=10000)
# Return the next batch of data
features, labels = ds.make_one_shot_iterator().get_next()
return features, labels
#_______________________________________________________________________________________________
_ = linear_regressor.train(
input_fn = lambda:my_input_fn(my_feature, targets),
steps=100
)
#__________________________________________________________________________________________________
print(linear_regressor.model_dir)
# Create an input function for predictions.
# Note: Since we're making just one prediction for each example, we don't
# need to repeat or shuffle the data here.
prediction_input_fn =lambda: my_input_fn(my_feature, targets, num_epochs=1, shuffle=False)
# Call predict() on the linear_regressor to make predictions.
predictions = linear_regressor.predict(input_fn = prediction_input_fn
)
# Format predictions as a NumPy array, so we can calculate error metrics.
predictions = np.array([item['predictions'][0] for item in predictions])
完整回溯:
WARNING:tensorflow:Using temporary folder as model directory: C:\Users\Username\
AppData\Local\Temp\tmpowu7j37s
C:\Users\Username\AppData\Local\Temp\tmpowu7j37s
Traceback (most recent call last):
File "fstf.py", line 104, in <module>
predictions = np.array([item['predictions'][0] for item in predictions])
File "fstf.py", line 104, in <listcomp>
predictions = np.array([item['predictions'][0] for item in predictions])
File "C:\Users\Username\AppData\Local\conda\conda\envs\tensorflow\lib\site-pac
kages\tensorflow\python\estimator\estimator.py", line 471, in predict
self._model_dir))
ValueError: Could not find trained model in model_dir: C:\Users\Username\AppData
\Local\Temp\tmpowu7j37s.
最佳答案
因为您没有为LinearRegressor
指定参数,所以您训练好的模型保存在系统临时目录中,并在您的程序完成时被系统删除/清理。
因此您应该为 LinearRegressor
指定一个 model_dir
参数。LinearRegressor
的__init__
函数是:
__init__(
feature_columns,
model_dir=None,
weight_column_name=None,
optimizer=None,
gradient_clip_norm=None,
enable_centered_bias=False,
label_dimension=1,
_joint_weights=False,
config=None,
feature_engineering_fn=None
)
您可以阅读文档 here
就您的代码而言,您应该更改这些代码
linear_regressor = tf.estimator.LinearRegressor(
feature_columns=feature_columns,
optimizer=my_optimizer
)
到
linear_regressor = tf.estimator.LinearRegressor(
feature_columns=feature_columns,
optimizer=my_optimizer,
model_dir="./your_own_model_dir"
)
你的程序将运行成功,Good Luck!!
关于python - 在 model_dir 中找不到经过训练的模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49215677/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!